JETP Letters

, Volume 95, Issue 9, pp 486–491

On the nonlinear Schrödinger equation for waves on a nonuniform current

Methods of Theoretical Physics

Abstract

A nonlinear Schrödinger equation with variable coefficients for surface waves on a large-scale steady nonuniform current has been derived without the assumption of a relative smallness of the velocity of the current. This equation can describe with good accuracy the loss of modulation stability of a wave coming to a counter current, leading to the formation of so-called rogue waves. Some theoretical estimates are compared to the numerical simulation with the exact equations for a two-dimensional potential motion of an ideal fluid with a free boundary over a nonuniform bottom at a nonzero average horizontal velocity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).ADSMATHCrossRefGoogle Scholar
  3. 3.
    C. Kharif and E. Pelinovsky, Eur. J. Mech. B: Fluids 22, 603 (2003).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Rogue Waves, Ed. by E. Pelinovsky and C. Kharif, Eur. J. Mech. B: Fluids 25, 535 (2006).Google Scholar
  5. 5.
    Discussion and Debate: Rogue Waves-Towards a Unifying Concept? Ed. by N. Akhmediev and E. Pelinovsky, Eur. Phys. J. Spec. Top. 185, 1 (2010).Google Scholar
  6. 6.
    Extreme and Rogue Waves, Special Issue of Natural Hazards and Earth System Sciences, Ed. by E. Pelinovsky and C. Kharif (2010): http://www.nat-hazards-earth-syst-sci.net/special-issue120.html.
  7. 7.
    V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, Eur. J. Mech. B: Fluids 21, 283 (2002).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    A. I. Dyachenko and V. E. Zakharov, JETP Lett. 81, 255 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    V. E. Zakharov, A. I. Dyachenko, and O. A. Prokofiev, Eur. J. Mech. B: Fluids 25, 677 (2006).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, Sov. Phys. JETP 62, 894 (1985).Google Scholar
  11. 11.
    N. Akhmediev and V. Korneev, Theor. Math. Phys. 69, 1089 (1986).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, Theor. Math. Phys. 72, 809 (1987).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A 373, 675 (2009).ADSMATHCrossRefGoogle Scholar
  14. 14.
    M. Erkintalo, K. Hammani, B. Kibler, et al., Phys. Rev. Lett. 107, 253901 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    D. H. Peregrine, Adv. Appl. Mech. 16, 9 (1976).MATHCrossRefGoogle Scholar
  16. 16.
    I. V. Lavrenov and A. V. Porubov, Eur. J. Mech. B: Fluids 25, 574 (2006).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    M. Onorato, A. R. Osborne, and M. Serio, Phys. Rev. Lett. 96, 014503 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    M. Onorato, T. Waseda, A. Toffoli, et al., Phys. Rev. Lett. 102, 114502 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    V. P. Ruban, Phys. Rev. E 74, 036305 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    V. P. Ruban, Phys. Rev. Lett. 99, 044502 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    V. P. Ruban, J. Exp. Theor. Phys. 110, 529 (2010).CrossRefGoogle Scholar
  22. 22.
    V. P. Ruban, JETP Lett. 94, 177 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    F. P. Bretherton and C. J. R. Garrett, Proc. R. Soc. London A 302, 529 (1968).ADSCrossRefGoogle Scholar
  24. 24.
    F.-M. Turpin, C. Benmoussa, and C. C. Mei, J. Fluid Mech. 132, 1 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    M. Gerber, J. Fluid Mech. 176, 311 (1987).ADSMATHCrossRefGoogle Scholar
  26. 26.
    J. R. Stocker and D. H. Peregrine, J. Fluid Mech. 399, 335 (1999).MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    K. B. Hjelmervik and K. Trulsen, J. Fluid Mech. 637, 267 (2009).MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    M. Onorato, D. Proment, and A. Toffoli, Phys. Rev. Lett. 107, 184502 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    V. P. Ruban, Phys. Rev. E 70, 066302 (2004).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    V. P. Ruban, Phys. Lett. A 340, 194 (2005).MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    V. P. Ruban, Phys. Rev. E 77, 037302 (2008).MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    V. P. Ruban, J. Exp. Theor. Phys. 114, 343 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations