JETP Letters

, Volume 95, Issue 8, pp 429–432 | Cite as

Temperature-scanned magnetic resonance and the evidence of two-way transfer of a nitrogen nuclear spin hyperfine interaction in coupled NV-N pairs in diamond

  • R. A. Babunts
  • A. A. Soltamova
  • D. O. Tolmachev
  • V. A. Soltamov
  • A. S. Gurin
  • A. N. Anisimov
  • V. L. Preobrazhenskii
  • P. G. Baranovi
Condensed Matter

Abstract

New method for the detection of magnetic resonance signals versus temperature is developed on the basis of the temperature dependence of the spin Hamiltonian parameters of the paramagnetic system under investigation. The implementation of this technique is demonstrated on the nitrogen-vacancy (NV) centers in diamonds. Single NV defects and their ensembles are suggested to be almost inertialess temperature sensors. The hyperfine structure of the 14N nitrogen nuclei of the nitrogen-vacancy center appears to be resolved in the hyperfine structure characteristic of the hyperfine interaction between NV and an N s center (substitutional nitrogen impurity) in the optically detected magnetic resonance spectra of the molecular NV-N s complex. Thus, we show that a direct evidence of the two-way transfer of a nitrogen nuclear spin hyperfine interaction in coupled NV-N s pairs was observed. It is shown that more than 3-fold enhancement of the NV optically detected magnetic resonance signal can be achieved by using water as a collection optics medium.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gruber, A. Drbenstedt, C. Tietz, et al., Science 276, 2012 (1997).CrossRefGoogle Scholar
  2. 2.
    F. Jelezko, I. Popa, A. Gruber, et al., Appl. Phys. Lett. 81, 2160 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    P. Nizovtsev, S. Ya. Kilin, F. Jelezko, et al., Phys. B: Condens. Matter 340–342, 106 (2003).CrossRefGoogle Scholar
  4. 4.
    J. Wrachtrup, Proc. Nat. Acad. Sci. USA 107, 9479 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    J.-P. Boudou, P. A. Curmi, F. Jelezko, et al., Nanotechnology 20, 235602 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    P. G. Baranov, A. A. Soltamova, D. O. Tolmachev, et al., Small 7, 1533 (2011).CrossRefGoogle Scholar
  7. 7.
    F. Jelezko and J. Wrachtrup, Phys. Status Solidi A 203, 3207 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    E. van Oort, P. Stroomer, and M. Glazbeek, Phys. Rev. B 42, 8605 (1990).ADSCrossRefGoogle Scholar
  9. 9.
    S. Felton, A. M. Edmonds, M. E. Newton, et al., Phys. Rev. B 79, 075203 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    Y. M. Kim, Y. H. Lee, P. Brosious, and J. W. Corbet, in Proceedings of the International Conference on Radiation Damage and Defects in Semiconductors, Reading, England, 1972 (Institute of Physics, London, 1973), p. 202.Google Scholar
  11. 11.
    N. M. Pavlov, M. I. Iglitsyn, M. G. Kosaganova, and V. N. Solomatin, Sov. Phys. Semicond. 9, 845 (1976).Google Scholar
  12. 12.
    V. M. Acosta, E. Bauch, M. P. Ledbetter, et al., Phys. Rev. Lett. 104, 070801 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    P. Siyushev, F. Kaiser, V. Jacques, et al., arXiv:1009.0607v1 [quant-ph] (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • R. A. Babunts
    • 1
  • A. A. Soltamova
    • 1
  • D. O. Tolmachev
    • 1
  • V. A. Soltamov
    • 1
  • A. S. Gurin
    • 1
  • A. N. Anisimov
    • 2
  • V. L. Preobrazhenskii
    • 1
  • P. G. Baranovi
    • 1
    • 2
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations