JETP Letters

, Volume 95, Issue 3, pp 164–169 | Cite as

Universal crossover of liquid dynamics in supercritical region

  • V. V. Brazhkin
  • Yu. D. Fomin
  • A. G. Lyapin
  • V. N. Ryzhov
  • K. Trachenko
Condensed Matter

Abstract

We demonstrate that all liquids in supercritical region may exist in two qualitatively different states: solid-like and gas-like. Solid-like to gas-like crossover corresponds to the condition τ ≈ τ0, where τ is liquid relaxation time and τ0 is the minimum period of transverse waves. This condition corresponds to the loss of shear stiffness of a liquid at all frequencies and defines a new narrow crossover zone on the phase diagram. We show that the intersection of this zone corresponds to the disappearance of high-frequency sound, qualitative changes of diffusion and viscous flow, increase in particle thermal speed to half of the speed of sound and reduction of the specific heat at constant volume to 2kB per particle. The new crossover is universal: it separates two liquid states at arbitrarily high pressure and temperature, and even exists in systems where liquid-gas transition and the critical point are absent overall.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Frenkel, Kinetic Theory of Liquids (Oxford Univ. Press, New York, 1946).MATHGoogle Scholar
  2. 2.
    D. C. Wallace, Phys. Rev. E 56, 4179 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    E. D. Chisolm and D. C. Wallace, J. Phys.: Condens. Matter 13, R739 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    M. Grimsditch, R. Bhadra, and L. M. Torell, Phys. Rev. Lett. 62, 2616 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    T. Pezeril, C. Klieber, S. Andrieu, et al., Phys. Rev. Lett. 102, 107402 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    S. Hosokawa, M. Inui, Y. Kajihara, et al., Phys. Rev. Lett. 102, 105502 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    J. P. Boon and S. Yip, Molecular Hydrodynamics (Dover, New York, 1980).Google Scholar
  8. 8.
    U. Balucani and M. Zoppi, Dynamics of the Liquid State (Clarendon, Oxford, 1994).Google Scholar
  9. 9.
    E. Pontecorvo, M. Krischm, A. Cunsolo, et al., Phys. Rev. E 71, 011501 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    T. Bryk, I. Mryglod, T. Scopigno, et al., J. Chem. Phys. 133, 024502 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    W.-C. Pilgrim and Chr. Morcel, J. Phys.: Condens. Matter 18, R585 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    T. Scopigno, G. Ruocco, and F. Sette, Rev. Mod. Phys. 77, 881 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    G. G. Simeoni, T. Bryk, F. Gorelli, et al., Nature Phys. 6, 503 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    F. Gorelli, M. Santoro, T. Scopigno, et al., Phys. Rev. Lett. 97, 245702 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    F. Bencivenga, A. Cunsolo, M. Krisch, et al., Europhys. Lett. 75, 70 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    F. Bencivenga, A. Cunsolo, M. Krisch, et al., Phys. Rev. Lett. 98, 085501 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    F. Bencivenga, A. Cunsolo, M. Krisch, et al., J. Chem. Phys. 130, 064501 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    R. Zwanzig and R. D. Mountain, J. Chem. Phys. 43, 4464 (1965).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/.
  20. 20.
    K. Trachenko, Phys. Rev. B 78, 104201 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    V. V. Brazhkin, Yu. D. Fomin, A. G. Lyapin, et al., http://arxiv.org/abs/1104.3414.
  22. 22.
    W. G. Hoover, S. G. Gray, and K. W. Johnson, J. Chem. Phys. 55, 1128 (1971).ADSCrossRefGoogle Scholar
  23. 23.
    A. Coniglio, U. de Angelis, and A. Forlani, J. Phys. A 10, 1123 (1977).ADSCrossRefGoogle Scholar
  24. 24.
    X. Campi, H. Krivine, and N. Sator, Physica A 296, 24 (2001).ADSCrossRefMATHGoogle Scholar
  25. 25.
    L. Xu, P. Kumar, S. V. Buldyrev, et al., Proc. Natl. Acad. Sci. USA 102, 16558 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    G. Malescio, J. Phys.: Condens. Matter 19, 073101 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    V. V. Brazhkin, Yu. D. Fomin, A. G. Lyapin, et al., J. Phys. Chem. B 115, 14112 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. V. Brazhkin
    • 1
  • Yu. D. Fomin
    • 1
  • A. G. Lyapin
    • 1
  • V. N. Ryzhov
    • 1
  • K. Trachenko
    • 2
  1. 1.Institute for High Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow regionRussia
  2. 2.South East Physics Network and School of PhysicsQueen Mary University of LondonLondonUK

Personalised recommendations