JETP Letters

, Volume 95, Issue 1, pp 25–28 | Cite as

Evolution of edge states in topological superfluids during the quantum phase transition

  • M. A. SilaevEmail author
  • G. E. Volovik
Condensed Matter


The quantum phase transition between topological and nontopological insulators or between fully gapped superfluids/superconductors can occur without closing the gap. We consider the evolution of the Majorana edge states on the surface of topological superconductor during transition to the topologically trivial superconductor on example of non-interacting Hamiltonian describing spin-triplet superfluid 3He-B. In conventional situation when the gap is nullified at the transition, the spectrum of Majorana fermions shrinks and vanishes after the transition to the trivial state. If the topological transition occurs without the gap closing, the Majorana fermion spectrum disappears by escaping to ultraviolet, where the Green’s function approaches zero. This demonstrates the close connection between the topological transition without closing the gap and zeroes in the Green’s function. Similar connection takes place in interacting systems where zeroes may occur due to interaction.


JETP Letter Edge State Topological Charge Quantum Phase Transition Topological Insulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, AIP Conf. Proc. 1134, 10 (2009); arXiv:0905.2029.ADSCrossRefGoogle Scholar
  3. 3.
    A. P. Schnyder, S. Ryu, and A. W. W. Ludwig, Phys. Rev. Lett. 102, 196804 (2009); arXiv:0901.1343.ADSCrossRefGoogle Scholar
  4. 4.
    A. Kitaev, AIP Conf. Proc. 1134, 22 (2009); arXiv:0901.2686.MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).zbMATHGoogle Scholar
  6. 6.
    G. E. Volovik, in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Ed. by W. G. Unruh and R. Schützhold, Springer Lecture Notes in Physics 718, 31 (2007); cond-mat/0601372.Google Scholar
  7. 7.
    P. Horava, Phys. Rev. Lett. 95, 016405 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    X.-L. Qi and Sh.-Ch. Zhang, Rev. Mod. Phys. 83, 1057 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    L. Fidkowski and A. Kitaev, Phys. Rev. B 81, 134509 (2010); Phys. Rev. B 83, 075103 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    V. Gurarie, Phys. Rev. B 83, 085426 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    A. M. Essin and V. Gurarie, Phys. Rev. B 84, 125132 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    M. M. Salomaa and G. E. Volovik, Phys. Rev. B 37, 9298 (1988).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    C. A. M. Castelijns, K. F. Coates, A. M. Guénault, et al., Phys. Rev. Lett. 56, 69 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    J. P. Davis, J. Pollanen, H. Choi, et al., Phys. Rev. Lett. 101, 085301 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    K. Nagai, Y. Nagato, M. Yamamoto and S. Higashitani, J. Phys. Soc. Jpn. 77, 111003 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    S. Murakawa, Y. Tamura, Y. Wada, et al., Phys. Rev. Lett. 103, 155301 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    S. B. Chung and Sh.-Ch. Zhang, Phys. Rev. Lett. 103, 235301 (2009); arXiv:0907.4394.ADSCrossRefGoogle Scholar
  19. 19.
    G. E. Volovik, JETP Lett. 90, 398 (2009); arXiv:0907.5389.ADSCrossRefGoogle Scholar
  20. 20.
    Y. Nagato, S. Higashitani, and K. Nagai, J. Phys. Soc. Jpn. 78, 123603 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Tsutsumi, M. Ichioka, and K. Machida, Phys. Rev. B 83, 094510 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    G. E. Volovik, JETP Lett. 90, 587 (2009); arXiv:0909.3084.ADSCrossRefGoogle Scholar
  23. 23.
    G. E. Volovik, JETP Lett. 70, 609 (1999); condmat/9909426.ADSCrossRefGoogle Scholar
  24. 24.
    Y. Nishida, Phys. Rev. D 81, 074004 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    M. A. Silaev and G. E. Volovik, J. Low Temp. Phys. 161, 460 (2010); arXiv:1005.4672.ADSCrossRefGoogle Scholar
  26. 26.
    J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    Ch.-K. Lu and I. F. Herbut, Phys. Rev. B 82, 144505 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    A. P. Schnyder and S. Ryu, arXiv:1011.1438; Phys. Rev. B 84, 060504(R) (2011).ADSGoogle Scholar
  30. 30.
    T. T. Heikkil 93, 59 (2011); arXiv:1011.4185.Google Scholar
  31. 31.
    T. T. Heikkil Lett. 94, 233 (2011); arXiv:1012.0905.Google Scholar
  32. 32.
    X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhni NovgorodRussia
  2. 2.Low Temperature LaboratoryAalto University, School of Science and TechnologyAaltoFinland
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations