JETP Letters

, Volume 95, Issue 1, pp 6–9 | Cite as

Integration of optical pulses by resonant diffraction gratings

Optics and Laser Physics

Abstract

The possibility of integrating optical pulses by resonant diffraction gratings has been considered. It has been shown that a diffraction grating provides integration of the pulse envelope in the vicinity of quasiguided-mode resonances. The integration is performed with an exponential weight function, whose decay rate is deter-mined by the quality factor of the resonance. Metallic diffraction gratings for integration of picosecond pulses have been computed. The calculation of the grating eigenmodes with the use of the scattering-matrix method has shown that the integration is performed in the vicinity of the resonances corresponding to the excitation of surface plasmon polaritons at the grating boundary. According to the results of numerical simulation, the integration quality is quite high.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Azaña, Opt. Lett. 33, 4 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    M. A. Preciado and M. A. Muriel, Opt. Lett. 33, 1348 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    M. H. Asghari and J. Azaña, J. Lightwave Technol. 27, 3888 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    M. H. Asghari, Y. Park, and J. Azaña, Opt. Express 19, 425 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    M. Kulishov and J. Azaña, Opt. Express 15, 6152 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, Opt. Lett. 36, 3509 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, J. Exp. Theor. Phys. 114 (2012, in press).Google Scholar
  8. 8.
    A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, New York, 1962).MATHGoogle Scholar
  9. 9.
    V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, et al., J. Exp. Theor. Phys. 110, 816 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, Phys. Rev. B 67, 085415 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, et al., Nature 391, 667 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    H. F. Ghaemi, T. Thio, D. E. Grupp, et al., Phys. Rev. B 58, 6779 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    M. G. Moharam, E. B. Grann, D. A. Pommet, et al., J. Opt. Soc. Am. A 12, 1068 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    L. Li, J. Opt. Soc. Am. A 13, 1024 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    L. Li, J. Opt. Soc. Am. A 13, 1870 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, et al., Phys. Rev. B 66, 045102 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    N. A. Gippius and S. G. Tikhodeev, Phys. Usp. 52, 967 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    A. B. Akimov, A. S. Vengurlekar, T. Weiss, et al., JETP Lett. 90, 355 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • D. A. Bykov
    • 1
  • L. L. Doskolovich
    • 1
  • V. A. Soifer
    • 1
  1. 1.Image Processing Systems InstituteRussian Academy of SciencesSamaraRussia
  2. 2.Samara State Aerospace UniversitySamaraRussia

Personalised recommendations