Advertisement

JETP Letters

, Volume 94, Issue 11, pp 806–810 | Cite as

Electronic structure of nonstoichiometric compounds in the coherent potential approximation

  • M. A. KorotinEmail author
  • N. A. Skorikov
  • V. M. Zainullina
  • E. Z. Kurmaev
  • A. V. Lukoyanov
  • V. I. Anisimov
Condensed Matter

Abstract

We formulate and implement a method for electronic structure calculations based on the coherent potential approximation. This method provides an accurate description for nonstoichiometric compounds with the disordered location of vacancies. In the essence of its formulation, the method is similar to the implementation of the local electron density approximation in combination with the dynamical mean field theory (LDA + DMFT) and, hence, it can be easily incorporated in the latter approach. We study the evolution of the electronic structure of titanium dioxide TiO2 − δ (rutile) with the growth of nonstoichiometry in the oxygen sublattice. The results of the calculations are compared to the experimental data on the photoemission spectra.

Keywords

JETP Letter Local Density Approximation Photoemission Spectrum Coherent Potential Approximation Dynamical Mean Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Soven, Phys. Rev. 156, 809 (1967).ADSCrossRefGoogle Scholar
  2. 2.
    A. Bansil, Phys. Rev. B 20, 4025 (1979); J. S. Faulkner and G. M. Stocks, Phys. Rev. B 21, 3222 (1980); A. J. Pindor, W. M. Temmerman, and B. L. Györffy, J. Phys. F: Met. Phys. 13, 1627 (1983); Z. Szotek, B. L. Györffy, G. M. Stocks, and W. M. Temmerman, J. Phys. F: Met. Phys. 14, 2571 (1984); A. Gonis and A. J. Freeman, Phys. Rev. B 29, 4277 (1984); D. D. Johnson, D. M. Nicholson, F. J. Pinski, et al., Phys. Rev. Lett. 56, 2088 (1986); H. Akai and P. H. Dederichs, Phys. Rev. B 47, 8739 (1993); I. A. Abrikosov and H. L. Skriver, Phys. Rev. B 47, 16532 (1993); I. A. Abrikosov, A. M. N. Niklasson, S. I. Simak, et al., Phys. Rev. Lett. 76, 4203 (1996); I. A. Abrikosov and B. Johansson, Phys. Rev. B 57, 14164 (1998); L. Vitos, I. A. Abrikosov, and B. Johansson, Phys. Rev. Lett. 87, 156401 (2001); H. Zhang, B. Johansson, and L. Vitos, Phys. Rev. B 79, 224201 (2009); H. Ebert, D. Ködderitzsch, and J. Minár, Rep. Prog. Phys. 74, 096501 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Matsumoto, M. Murakami, T. Shono, et al., Science 291, 854 (2001); L. Sangaletti, M. C. Mozzati, P. Galinetto, et al., J. Phys.: Condens. Matter 18, 7643 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    T. Dietl, Nature Mater. 9, 965 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    K. Maeda and K. Domen, J. Phys. Chem. Lett. 7, 2655 (2010).CrossRefGoogle Scholar
  6. 6.
    N. H. Hong, J. Sakai, N. Poirot, and V. Brizé, Phys. Rev. B 73, 132404 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    U. Diebold, Nature Chem. 3, 271 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    J. Minár, L. Chioncel, A. Perlov, et al., Phys. Rev. B 72, 045125 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    S. C. Abrahams and J. L. Bernstein, J. Chem. Phys. 55, 3206 (1971).ADSCrossRefGoogle Scholar
  12. 12.
    D. C. Cronemeyer, Phys. Rev. 87, 876 (1952).ADSCrossRefGoogle Scholar
  13. 13.
    Z. H. Levine and D. C. Allan, Phys. Rev. Lett. 63, 1719 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, et al., Phys. Rev. B 71, 125119 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).ADSCrossRefGoogle Scholar
  17. 17.
    D. C. Cronemeyer, Phys. Rev. 113, 1222 (1959).ADSCrossRefGoogle Scholar
  18. 18.
    A. K. Ghosh, F. G. Wakim, and R. R. Addiss, Jr., Phys. Rev. 184, 979 (1969).ADSCrossRefGoogle Scholar
  19. 19.
    V. E. Henrich and R. L. Kurtz, Phys. Rev. B 23, 6280 (1981).ADSCrossRefGoogle Scholar
  20. 20.
    T. Caruso, C. Lenardi, T. Mazza, et al., Surf. Sci. 601, 2688 (2007); L. Fleming, C. C. Fulton, G. Lucovsky, et al., J. Appl. Phys. 102, 033707 (2007); A. G. Thomas, W. R. Flavell, A. K. Mallick, et al., Phys. Rev. B 75, 035105 (2007); M. Nolan, S. D. Elliott, J. S. Mulley, et al., Phys. Rev. B 77, 235424 (2008); S. Wendt, P. T. Sprunger, E. Lira, et al., Science 320, 1755 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    A. K. See and R. A. Bartynski, J. Vac. Sci. Technol. A 10, 2591 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. A. Korotin
    • 1
    Email author
  • N. A. Skorikov
    • 1
  • V. M. Zainullina
    • 1
    • 2
  • E. Z. Kurmaev
    • 1
  • A. V. Lukoyanov
    • 1
    • 3
  • V. I. Anisimov
    • 1
    • 3
  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Solid-State Chemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  3. 3.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations