JETP Letters

, Volume 94, Issue 11, pp 824–830 | Cite as

Curvature-dependent excitation propagation in cultured cardiac tissue

Biophysics

Abstract

The geometry of excitation wave front may play an important role on the propagation block and spiral wave formation. The wave front which is bent over the critical value due to interaction with the obstacles may partially cease to propagate and appearing wave breaks evolve into rotating waves or reentry. This scenario may explain how reentry spontaneously originates in a heart. We studied highly curved excitation wave fronts in the cardiac tissue culture and found that in the conditions of normal, non-inhibited excitability the curvature effects do not play essential role in the propagation. Neither narrow isthmuses nor sharp corners of the obstacles, being classical objects for production of extremely curved wave front, affect non-inhibited wave propagation. The curvature-related phenomena of the propagation block and wave detachment from the obstacle boundary were observed only after partial suppression of the sodium channels with Lidocaine. Computer simulations confirmed the experimental observations. The explanation of the observed phenomena refers to the fact that the heart tissue is made of finite size cells so that curvature radii smaller than the cardiomyocyte size loses sense, and in non-inhibited tissue the single cell is capable to transmit excitation to its neighbors.

Keywords

Lidocaine Wave Front JETP Letter Conduction Block Spiral Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Davidenko, A. V. Pertsov, R. Salomonsz, et al., Nature 355(6358), 349 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    V. G. Fast and A. G. Kleber, Cardiovasc. Res. 33, 258 (1997).CrossRefGoogle Scholar
  3. 3.
    A. G. Kleber and Y. Rudy, Phys. Rev. 84, 431 (2004).CrossRefGoogle Scholar
  4. 4.
    M. S. Spach and J. M. Kootsey, Am. J. Phys. Heart Circ. Phys. 244, H3 (1983).Google Scholar
  5. 5.
    E. D. Overholt, R. W. Joyner, R. D. Veenstra, et al., Am. J. Phys. Heart Circ. Phys. 247, H584 (1984).Google Scholar
  6. 6.
    S. M. Dillon, M. A. Allessie, P. C. Ursell, and A. L. Wit, Circ. Res. 63, 182 (1988).Google Scholar
  7. 7.
    M. J. Schalij, W. Lammers, P. L. Rensma, and MA. Allessie, Am. J. Phys. Heart Circ. Phys. 263, H1466 (1992).Google Scholar
  8. 8.
    C. Cabo, A. M. Pertsov, W. T. Baxter, et al., Circ. Res. 75, 1014 (1994).Google Scholar
  9. 9.
    C. Cabo, A. M. Pertsov, J. M. Davidenko, et al., Biophys. J. 70, 1105 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    V. G. Fast and A. G. Kleber, Cardiovasc. Res. 30, 449 (1995).Google Scholar
  11. 11.
    V. G. Fast and A. G. Kleber, Cardiovasc. Res. 29, 697 (1995).Google Scholar
  12. 12.
    S. Iravanian, Y. Nabutovsky, C. R. Kong, et al., Am. J. Phys. Heart Circ. Phys. 285, H449 (2003).Google Scholar
  13. 13.
    D. P. Zipes, A. J. Camm, M. Borggrefe, et al., Circulation 114, e385 (2006).CrossRefGoogle Scholar
  14. 14.
    D. Darbar, in Cardiac Electrophysiology: From Cell to Bedside, 5th ed., Ed. by D. P. Zipes and J. Jalife (WB Saunders, Philadelphia, 2009), p. 959.Google Scholar
  15. 15.
    M. Yamazaki, H. Honjo, H. Nakagawa, et al., Am. J. Phys. Heart Circ. Phys. 292, H539–48 (2007).CrossRefGoogle Scholar
  16. 16.
    D. M. Roden, N. Engl. J. Med. 350, 1013 (2004).CrossRefGoogle Scholar
  17. 17.
    K. P. Anderson, R. Walker, R. L. Lux, et al., Circulation 81, 1024 (1990).CrossRefGoogle Scholar
  18. 18.
    A. Isomura, M. Horning, K. Agladze, and K. Yoshikawa, Phys. Rev. E 78, 066216 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    M. W. Kay and R. A. Gray, IEEE Trans. Biomed. Eng. 52, 50 (2005).CrossRefGoogle Scholar
  20. 20.
    J. P. Drouhard and F. A. Roberge, Comput. Biomed. Res. 20, 333 (1987).CrossRefGoogle Scholar
  21. 21.
    G. W. Beeler and H. Reuter, J. Phys. 268, 177 (1977).Google Scholar
  22. 22.
    K. Agladze, M. W. Kay, V. Krinsky, and N. Sarvazyan, Am. J. Phys. Heart Circ. Phys. 293, H503 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute for Integrated Cell-Material SciencesKyoto UniversityKyotoJapan
  2. 2.Department of Electrical and Computer EngineeringGeorge Washington UniversityWashington DCUSA
  3. 3.Research and Education Center BionanophysicsMoscow Institute of Physics and TechnologyDolgoprudnyi, Moscow regionRussia

Personalised recommendations