Advertisement

JETP Letters

, Volume 94, Issue 9, pp 689–692 | Cite as

Ginzburg-landau slopes of the anisotropic upper critical magnetic field and band parameters in the superconductor (TMTSF)2ClO4

  • A. G. Lebed
Condensed Matter

Abstract

We theoretically determine the Ginzburg-Landau slopes of the anisotropic upper critical magnetic field in a quasi-one-dimensional superconductor and correct the previous works on this issue. By using the experimentally measured values of the Ginzburg-Landau slopes in the superconductor (TMTSF)ClO4, we determine band parameters of its electron spectrum. Our main result is that the so-called quantum dimensional crossover has to happen in this material in magnetic fields, H = 3–8 T, which are much lower than the previously assumed. We discuss how this fact influences metallic and superconducting properties of the (TMTSF)2ClO4.

Keywords

Electron Spectrum JETP Letter Critical Field TMTSF Critical Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. M. Chaikin, M.-Y. Choi, J. F. Kwak, et al., Phys. Rev. Lett. 51, 2333 (1983).CrossRefADSGoogle Scholar
  2. 2.
    M. Ribault, D. Jerome, J. Tuchendler, et al., J. Phys. (Paris) Lett. 44, L–953 (1983).Google Scholar
  3. 3.
    The Physics of Organic Superconductors and Conductors, Ed. by A. G. Lebed (Springer, Berlin, 2008).Google Scholar
  4. 4.
    T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 2nd ed. (Springer, Berlin, 1998).CrossRefGoogle Scholar
  5. 5.
    L. P. Gor’kov and A. G. Lebed, J. Phys. (Paris) Lett. 45, L–433 (1984).Google Scholar
  6. 6.
    M. Heritier, G. Montambaux, and P. Lederer, J. Phys. (Paris) Lett. 45, L–943 (1984).Google Scholar
  7. 7.
    A. G. Lebed, Sov. Phys. JETP 62, 595 (1985).Google Scholar
  8. 8.
    A. Virosztek, L. Cheng, and K. Maki, Phys. Rev. B 34, 3371 (1986).CrossRefADSGoogle Scholar
  9. 9.
    D. Poilblanc, G. Montambaux, M. Heritier, and P. Lederer, Phys. Rev. Lett. 58, 270 (1987).CrossRefADSGoogle Scholar
  10. 10.
    V. M. Yakovenko, Phys. Rev. B 43, 11353 (1991).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    A. G. Lebed, Physica B 405, S106 (2010).CrossRefADSGoogle Scholar
  12. 12.
    A. G. Lebed, N. N. Bagmet, and M. J. Naughton, Phys. Rev. Lett. 93, 157006 (2004).CrossRefADSGoogle Scholar
  13. 13.
    P. Dhakal, H. Yoshino, J. Il Oh, et al., Phys. Rev. Lett. 105, 067201 (2010).CrossRefADSGoogle Scholar
  14. 14.
    A. G. Lebed and M. J. Naughton, Phys. Rev. Lett. 91, 187003 (2003).CrossRefADSGoogle Scholar
  15. 15.
    A. G. Lebed, H.-I. Ha, and M. J. Naughton, Phys. Rev. B 71, 132504 (2005).CrossRefADSGoogle Scholar
  16. 16.
    A. G. Lebed, JETP Lett. 44, 114 (1986).ADSGoogle Scholar
  17. 17.
    N. Dupuis, G. Montambaux, and C. A. R. Sa de Melo, Phys. Rev. Lett. 70, 2613 (1993).CrossRefADSGoogle Scholar
  18. 18.
    A. G. Lebed and K. Yamaji, Phys. Rev. Lett. 80, 2697 (1998).CrossRefADSGoogle Scholar
  19. 19.
    A. G. Lebed, Phys. Rev. Lett. 95, 247003 (2005).CrossRefADSGoogle Scholar
  20. 20.
    As shown in [15], the so-called anion gap [3, 4] in the electron spectrum of (TMTSF)2ClO4 is much less than the parameter tb. Therefore, we disregard the anion gap in the electron spectrum (1).Google Scholar
  21. 21.
    A. G. Lebed, Phys. Rev. Lett. 107, 087004 (2011).CrossRefADSGoogle Scholar
  22. 22.
    S. Yonezawa, S. Kusaba, Y. Maeno, et al., Phys. Rev. Lett. 100, 117002 (2008).CrossRefADSGoogle Scholar
  23. 23.
    A. G. Lebed, Phys. Rev. B 59, R721 (1999).CrossRefADSGoogle Scholar
  24. 24.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1994).zbMATHGoogle Scholar
  25. 25.
    A. G. Lebed and S. Wu, Phys. Rev. B 82, 172504 (2010).CrossRefADSGoogle Scholar
  26. 26.
    L. P. Gor’kov and D. Jerome, J. Phys. (Paris) Lett. 46, L643 (1985).Google Scholar
  27. 27.
    L. P. Gor’kov and T. K. Melik-Barkhudarov, Sov. Phys. JETP 18, 1031 (1964).Google Scholar
  28. 28.
    S. Yonezawa, S. Kusaba, Y. Maeno, et al., Phys. Rev. Lett. 100, 117002 (2008).CrossRefADSGoogle Scholar
  29. 29.
    S. Yonezawa, S. Kusaba, Y. Maeno, et al., J. Phys.: Conf. Ser. 150, 052289 (2009).CrossRefADSGoogle Scholar
  30. 30.
    S. Yonezawa, Y. Maeno, K. Bechgaard, and D. Jerome, preprint (2010).Google Scholar
  31. 31.
    C. Bourbonnais and A. Sedeki, Phys. Rev. B 80, 085105 (2009).CrossRefADSGoogle Scholar
  32. 32.
    N. Belmechri, G. Abramovici, and M. Heritier, Europhys. Lett. 82, 47009 (2008).CrossRefADSGoogle Scholar
  33. 33.
    H. Shimahara, Phys. Rev. B 61, R14936 (2000).CrossRefADSGoogle Scholar
  34. 34.
    A. G. Lebed, JETP Lett. 94, 382 (2011).CrossRefADSGoogle Scholar
  35. 35.
    L. P. Gor’kov, Sov. Phys. JETP 10, 593 (1960).MathSciNetGoogle Scholar
  36. 36.
    N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).CrossRefADSGoogle Scholar
  37. 37.
    A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962); B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).CrossRefADSGoogle Scholar
  38. 38.
    M. J. Naughton, I. J. Lee, P. M. Chaikin, and G. M. Danner, Synth. Metals 85, 1481 (1997).CrossRefGoogle Scholar
  39. 39.
    S. Wu and A. G. Lebed, Phys. Rev. B 82, 075123 (2010).CrossRefADSGoogle Scholar
  40. 40.
    P. D. Grigoriev, Phys. Rev. B 83, 245129 (2011).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. G. Lebed
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations