Advertisement

JETP Letters

, Volume 94, Issue 9, pp 673–675 | Cite as

Superluminal neutrino and spontaneous breaking of Lorentz invariance

  • F. R. Klinkhamer
  • G. E. Volovik
Astrophysics and Cosmology

Abstract

Generally speaking, the existence of a superluminal neutrino can be attributed either to re-entrant Lorentz violation at ultralow energy from intrinsic Lorentz violation at ultrahigh energy or to spontaneous breaking of fundamental Lorentz invariance (possibly by the formation of a fermionic condensate). Re-entrant Lorentz violation in the neutrino sector has been discussed elsewhere. Here, the focus is on mechanisms of spontaneous symmetry breaking.

Keywords

Lorentz Invariance Spontaneous Symmetry Breaking Spontaneous Breaking Neutrino Sector Lorentz Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Adam et al. (OPERA Collab.), “Measurement of the Neutrino Velocity with the OPERA Detector in the CNGS Beam,” arXiv:1109.4897v1.Google Scholar
  2. 2.
    C. R. Contaldi, “The OPERA Neutrino Velocity Result and the Synchronisation of Clocks,” arXiv:1109.6160.Google Scholar
  3. 3.
    R. Alicki, “A Possible Statistical Mechanism of Anomalous Neutrino Velocity in OPERA Experiment?,” arXiv:1109.5727.Google Scholar
  4. 4.
    A. G. Cohen and S. L. Glashow, “New Constraints on Neutrino Velocities,” arXiv:1109.6562.Google Scholar
  5. 5.
    S. Chadha and H. B. Nielsen, Nucl. Phys. B 217, 125 (1983).CrossRefADSGoogle Scholar
  6. 6.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).zbMATHGoogle Scholar
  7. 7.
    J. D. Bjorken, Ann. Phys. 24, 174 (1963).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    A. Jenkins, Phys. Rev. D 69, 105007 (2004); arXiv:hepth/0311127.CrossRefADSGoogle Scholar
  9. 9.
    F. R. Klinkhamer and G. E. Volovik, Int. J. Mod. Phys. A 20, 2795 (2005); arXiv:hep-th/0403037.CrossRefzbMATHADSGoogle Scholar
  10. 10.
    G. E. Volovik, Lect. Notes Phys. 718, 31 (2007); arXiv:cond-mat/0601372.CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    T. Jacobson, PoS QG-PH, 020 (2007); arXiv:0801.1547.Google Scholar
  12. 12.
    K. Akama, Prog. Theor. Phys. 60, 1900 (1978).CrossRefzbMATHADSMathSciNetGoogle Scholar
  13. 13.
    G. E. Volovik, Physica B 162, 222 (1990).CrossRefADSGoogle Scholar
  14. 14.
    C. Wetterich, Phys. Rev. D 70, 105004 (2004); arXiv:hep-th/0307145.CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    D. Diakonov, “Towards Lattice-Regularized Quantum Gravity,” arXiv:1109.0091.Google Scholar
  16. 16.
    T. T. Heikkilá and G. E. Volovik, JETP Lett. 92, 681 (2010); arXiv:1010.0393.CrossRefADSGoogle Scholar
  17. 17.
    F. R. Klinkhamer, “Superluminal Muon-Neutrino Velocity from a Fermi-Point-Splitting Model of Lorentz Violation,” arXiv:1109.5671.Google Scholar
  18. 18.
    S. R. Coleman and S. L. Glashow, Phys. Lett. B 405, 249 (1997); arXiv:hep-ph/9703240; S. R. Coleman and S. L. Glashow, Phys. Rev. D 59, 116008 (1999); arXiv:hep-ph/9812418.CrossRefADSGoogle Scholar
  19. 19.
    G. Dvali and A. Vikman, “Price for Environmental Neutrino-Superluminality,” arXiv:1109.5685.Google Scholar
  20. 20.
    A. Kehagias, “Relativistic Superluminal Neutrinos,” arXiv:1109.6312.Google Scholar
  21. 21.
    C. Pfeifer and M. N. R. Wohlfarth, “Beyond the Speed of Light on Finsler Spacetimes,” arXiv:1109.6005.Google Scholar
  22. 22.
    O. Gagnon and G. D. Moore, Phys. Rev. D 70, 065002 (2004); arXiv:hep-ph/0404196.CrossRefADSGoogle Scholar
  23. 23.
    S. Bernadotte and F. R. Klinkhamer, Phys. Rev. D 75, 024028 (2007); arXiv:hep-ph/0610216.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of Karlsruhe, Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Low Temperature LaboratoryAalto UniversityAaltoFinland
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations