JETP Letters

, Volume 94, Issue 9, pp 723–727 | Cite as

Perturbation theory for a hamiltonian linear in quasimomentum

  • L. A. Falkovsky
Methods of Theoretical Physics


Perturbation theory has been proposed to take into account small terms in the multiband Hamiltonian, which lead to significant changes such as the trigonal warping of the Fermi surface. The theory is similar to the “cross technique” and is reduced to the self-energy corrections to the matrix Green’s function. A particular application to graphite and a graphene bilayer has been given.


Perturbation Theory Fermi Surface Brillouin Zone JETP Letter Graphene Bilayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Suematsu and S.-i. Tanuma, J. Phys. Soc. Jpn. 33, 1619 (1972).CrossRefADSGoogle Scholar
  2. 2.
    W. W. Toy, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B 15, 4077 (1977).CrossRefADSGoogle Scholar
  3. 3.
    R. E. Doezema, W. R. Datars, H. Schaber, and A. van Schyndel, Phys. Rev. B 19, 4224 (1979).CrossRefADSGoogle Scholar
  4. 4.
    E. Mendez, A. Misu, and M. S. Dresselhaus, Phys. Rev. B 21, 827 (1980).CrossRefADSGoogle Scholar
  5. 5.
    Z. Q. Li, S.-W. Tsai, W. J. Padilla, et al., Phys. Rev. B 74, 195404 (2006).CrossRefADSGoogle Scholar
  6. 6.
    M. Orlita, C. Faugeras, G. Martinez, et al., Phys. Rev. Lett. 100, 136403 (2008).CrossRefADSGoogle Scholar
  7. 7.
    M. Orlita, C. Faugeras, J. M. Schneider, et al., Phys. Rev. Lett. 102, 166401 (2009).CrossRefADSGoogle Scholar
  8. 8.
    M. Orlita and M. Potemski, Semicond. Sci. Technol. 25, 063001 (2010).CrossRefADSGoogle Scholar
  9. 9.
    I. Crassee, J. Levallois, A. L. Walter, et al., Nature Phys. 7, 48 (2011).CrossRefADSGoogle Scholar
  10. 10.
    Y. Kopelevich, J. H. S. Torres, R. R. da Silva, et al., Phys. Rev. Lett. 90, 156402 (2003).CrossRefADSGoogle Scholar
  11. 11.
    I. A. Luk’yanchuk and Y. Kopelevich, Phys. Rev. Lett. 97, 256801 (2006).CrossRefADSGoogle Scholar
  12. 12.
    Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 99, 106802 (2007).CrossRefADSGoogle Scholar
  13. 13.
    J. M. Schneider, M. Orlita, M. Potemski, and D. K. Maude, Phys. Rev. Lett. 102, 166403 (2009).CrossRefADSGoogle Scholar
  14. 14.
    A. N. Ramanayaka and R. G. Mani, Phys. Rev. B 82, 165327 (2010).CrossRefADSGoogle Scholar
  15. 15.
    J. W. McClure, Phys. Rev. 108, 612 (1957); J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958).CrossRefADSGoogle Scholar
  16. 16.
    N. B. Brandt, S. M. Chudinov, and Ya. G. Ponomarev, Semimetals I. Graphite and Its Compounds (Elsevier, Amsterdam, 1988).Google Scholar
  17. 17.
    L. A. Falkovsky, Phys. Rev. B 82, 073103 (2010).CrossRefADSGoogle Scholar
  18. 18.
    G. Li and E. Y. Andrei, Nature Phys. 3, 623 (2007).CrossRefADSGoogle Scholar
  19. 19.
    K.-C. Chuang, A. M. R. Baker, and R. J. Nicholas, Phys. Rev. B 80, 161410(R) (2009).CrossRefADSGoogle Scholar
  20. 20.
    L. M. Zhang, Z. Q. Li, D. N. Basov, et al., Phys. Rev. B 78, 235408 (2008).CrossRefADSGoogle Scholar
  21. 21.
    H. Ushio, T. Uda, and Y. Uemura, J. Phys. Soc. Jpn. 33, 1551 (1972).CrossRefADSGoogle Scholar
  22. 22.
    K. Nakao, J. Phys. Soc. Jpn. 40, 761 (1976).CrossRefADSGoogle Scholar
  23. 23.
    B. Partoens and F. M. Peeters, Phys. Rev. B 74, 075404 (2006).CrossRefADSGoogle Scholar
  24. 24.
    A. Grüneis, C. Attaccalite, L. Wirtz, et al., Phys. Rev. B 78, 205425 (2008).CrossRefADSGoogle Scholar
  25. 25.
    A. B. Kuzmenko, I. Crassee, D. van der Marel, et al., Phys. Rev. B 80, 165406 (2009).CrossRefADSGoogle Scholar
  26. 26.
    G. Dresselhaus, Phys. Rev. B 10, 3602 (1974).CrossRefADSGoogle Scholar
  27. 27.
    A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975)Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. A. Falkovsky
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations