Advertisement

JETP Letters

, Volume 94, Issue 9, pp 714–718 | Cite as

Negative ions Ar, Kr, and Xe in superfluid helium

  • A. M. Dyugaev
  • P. D. Grigor’ev
  • E. V. LebedevaEmail author
Condensed Matter
  • 49 Downloads

Abstract

The catalogue of negative ions in superfluid helium has been extended using the example of Ar, Kr, and Xe. Such objects cannot exist in vacuum, since the polarization attraction of an electron to the inert A atom is insufficient for the formation of the bound state A. However, these objects exist in helium as stable or metastable with a very long lifetime. The effect is due to the electron localization in liquid helium. If a mixture of excited A* atoms and electrons is prepared in the gas phase above liquid helium, the reaction A* + e = A* becomes possible for all atoms of the periodic table. Such charges can be immersed into liquid helium by the electric field. In this case, the radiative decay A* = A + e allowed in vacuum can be forbidden in liquid. This leads to the formation of the new unique objects A, which can exist in liquid helium but are absent in nature. The size of such charged formations has been determined and is close the radius of a usual electron bubble in helium.

Keywords

JETP Letter Liquid Helium Superfluid Helium Unitarity Limit Electron Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. G. Ihas and T. M. Sanders, Phys. Rev. Lett. 27, 383 (1971).CrossRefADSGoogle Scholar
  2. 2.
    H. J. Maris, J. Phys. Soc. Jpn. 77, 111008 (2008).CrossRefADSGoogle Scholar
  3. 3.
    F. Ancilotto, M. Barranco, and M. Pi, Phys. Rev. B 80, 174504 (2009).CrossRefADSGoogle Scholar
  4. 4.
    V. L. Eden and P. V. E. McClintock, Phys. Lett. A 102, 197 (1984).CrossRefADSGoogle Scholar
  5. 5.
    C. D. H. Williams, P. C. Hendry, and P. V. E. McClintock, Jpn. J. Appl. Phys. 26(3), 105 (1987).Google Scholar
  6. 6.
    G. G. Ihas, PhD Thesis (Univ. of Michigan, Ann Arbon, Michigan, 1971).Google Scholar
  7. 7.
    V. L. Eden, M. Phil. Thesis (Univ. of Lancaster, Lancaster, United Kingdom, 1986).Google Scholar
  8. 8.
    T. M. Sanders and G. G. Ihas, Phys. Rev. Lett. 59, 1722 (1987).CrossRefADSGoogle Scholar
  9. 9.
    C. D. H. Williams, P. C. Hendry, and P. V. E. McClintock, Phys. Rev. Lett. 60, 865 (1988); T. M. Sanders and G. G. Ihas, Phys. Rev. Lett. 60, 866 (1988).CrossRefADSGoogle Scholar
  10. 10.
    V. P. Shevelko, Atoms and Their Spectroscopic Properties (Springer, Berlin, 1997).Google Scholar
  11. 11.
    A. G. Khrapak, JETP Lett. 86, 252 (2007).CrossRefADSGoogle Scholar
  12. 12.
    K. F. Volykhin, A. G. Khrapak, and V. F. Shmidt, J. Exp. Theor. Phys. 81, 901 (1995).ADSGoogle Scholar
  13. 13.
    P. D. Grigoriev and A. M. Dyugaev, J. Exp. Theor. Phys. 88, 325 (1999).CrossRefADSGoogle Scholar
  14. 14.
    R. A. Ferrel, Phys. Rev. 108, 167 (1957).CrossRefADSGoogle Scholar
  15. 15.
    B. M. Smirnov, Phys. Usp. 45, 1251 (2002).CrossRefADSGoogle Scholar
  16. 16.
    A. M. Dyugaev, P. D. Grigoriev, and E. V. Lebedeva, JETP Lett. 91, 303 (2010).CrossRefADSGoogle Scholar
  17. 17.
    A. Dalgarno, Adv. Chem. Phys. 12, 143 (1967).CrossRefGoogle Scholar
  18. 18.
    E. V. Lebedeva, A. M. Dyugaev, and P. D. Grigoriev, J. Exp. Theor. Phys. 110, 694 (2010).CrossRefADSGoogle Scholar
  19. 19.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).Google Scholar
  20. 20.
    F. Dalfovo, R. Mayol, M. Pi, and M. Barranco, Phys. Rev. Lett. 85, 1028 (2000).CrossRefADSGoogle Scholar
  21. 21.
    H. A. Kramers, Physica 7, 284 (1940).CrossRefzbMATHADSMathSciNetGoogle Scholar
  22. 22.
    M. Farnik and J. P. Toennies, J. Chem. Phys. 118, 4176 (2003).CrossRefADSGoogle Scholar
  23. 23.
    G. H. Lee, S. T. Arnold, J. G. Eaton, et al., Z. Phys. D: At. Mol. Clust. 20, 9 (1991).CrossRefADSGoogle Scholar
  24. 24.
    L. Spruch, T. F. O’Malley, and L. Rosenberg, Phys. Rev. Lett. 5, 375 (1960); T. F. O’Malley, L. Spruch, and L. Rosenberg, J. Math. Phys. 2, 491 (1961).CrossRefADSGoogle Scholar
  25. 25.
    T. Arai, H. Yayama, and K. Kono, Low Temp. Phys. 34, 397 (2008).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. M. Dyugaev
    • 1
    • 2
  • P. D. Grigor’ev
    • 1
  • E. V. Lebedeva
    • 3
    Email author
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Max-Planck-Insitut für Physik komplexer SystemeDresdenGermany
  3. 3.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations