Advertisement

JETP Letters

, Volume 94, Issue 7, pp 513–518 | Cite as

Motion of near-spherical micro-capsule in planar external flow

  • S. S. Vergeles
  • P. E. Vorobev
Plasma, Hydro- and Gas Dynamics

Abstract

Dynamics of a micro-capsule with compressible membrane placed into planar flow is considered. The form of the capsule is assumed to be near-spherical and the membrane forces are calculated in the first order in respect to the membrane displacement. We have established that the capsule dynamics is governed by two dimensionless parameters in this limit, which account for membrane stretch modulus B, viscosities of inner fluid and solvent, capsule radius, external flow gradient and Taylor deformation parameter at rest. Phase diagram for capsule dynamical regimes is plotted on the plane of these two dimensionless parameters in the limits of low and high viscosity contrast between the fluid inside the capsule and the solvent.

Keywords

JETP Letter Capillary Number Elastic Force Capsule Form External Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Walter, H. Rehage, and H. Leonhard, Coll. Surf. A 183–185, 123 (2001).CrossRefGoogle Scholar
  2. 2.
    A. Walter, H. Rehage, and H. Leonhard, Coll. Pol. Sci. 278, 169 (2000).CrossRefGoogle Scholar
  3. 3.
    K. S. Chang and W. L. Olbricht, J. Fluid. Mech. 250, 609 (2006).CrossRefADSGoogle Scholar
  4. 4.
    K. Kita and Ch. Dittrich, Expert. Opin. Drug Deliv. 8, 329 (2011); Y. Wang, Y. Yan, J. Cui, et al., Adv. Mater. 22, 4293 (2010).CrossRefGoogle Scholar
  5. 5.
    Molecular Cell Biology, Ed. by H. Lodish et al. (Freeman, New York, 2007).Google Scholar
  6. 6.
    R. Finken, S. Kessler, and U. Seifert, J. Phys. Cond. Mat. 23, 184113 (2011).CrossRefADSGoogle Scholar
  7. 7.
    Bagchi Prosenjit and R. Kalluri, Phys. Rev. E 80, 1 (2009).Google Scholar
  8. 8.
    P. M. Vlahovska, Y.-N. Young, G. Danker, et al., J. Fluid Mech. 678, 221 (2011).CrossRefGoogle Scholar
  9. 9.
    G. Danker and C. Misbah, Phys. Rev. Lett. 98, 3 (2007).CrossRefGoogle Scholar
  10. 10.
    S. S. Vergeles, JETP Lett. 87, 511 (2008).CrossRefADSGoogle Scholar
  11. 11.
    V. Kantsler, E. Segre, and V. Steinberg, Eur. Phys. Lett. 82, 58005 (2008).CrossRefADSGoogle Scholar
  12. 12.
    D. Barthès-Biesel, J. Fluid Mech. 100, 831 (1980).CrossRefzbMATHADSMathSciNetGoogle Scholar
  13. 13.
    D. Barthès-Biesel and J. M. Rallison, J. Fluid Mech. 113, 251 (1981).CrossRefzbMATHADSGoogle Scholar
  14. 14.
    J. Walter, A.-V. Salsac, and D. Barthès-Biesel, J. Fluid Mech. 676, 318 (2011).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    D. Barthès-Biesel and H. Sgaier, J. Fluid Mech. 160, 119 (1985).CrossRefzbMATHADSMathSciNetGoogle Scholar
  16. 16.
    S. Kessler, R. Finken, and U. Seifert, J. Fluid Mech. 605, 207 (2008).CrossRefzbMATHADSMathSciNetGoogle Scholar
  17. 17.
    S. Kessler, R. Finken, and U. Seifert, Eur. Phys. J. E 29, 399 (2009).CrossRefGoogle Scholar
  18. 18.
    V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, Phys. Rev. Lett. 99, 086802 (2007).CrossRefGoogle Scholar
  19. 19.
    J. Deschamps, V. Kantsler, and V. Steinberg, Phys. Rev. Lett 102, 3 (2009).CrossRefGoogle Scholar
  20. 20.
    B. J. Bentley and L. G. Leal, J. Fluid Mech. 167, 219 (1986).CrossRefzbMATHADSGoogle Scholar
  21. 21.
    U. Seifert, Eur. Phys. J. B 8, 405 (1999).CrossRefADSGoogle Scholar
  22. 22.
    V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, New J. Phys. 10, 043044 (2008).CrossRefGoogle Scholar
  23. 23.
    V. N. Pokrovskii, Sov. Phys. Usp. 14, 737 (1972).CrossRefADSGoogle Scholar
  24. 24.
    G. Taylor, Proc. R. Soc. London A 138, 41 (1932).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. S. Vergeles
    • 1
  • P. E. Vorobev
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations