JETP Letters

, Volume 94, Issue 6, pp 477–480 | Cite as

Digital photocontrol of the network of live excitable cells

  • I. S. Erofeev
  • N. Magome
  • K. I. AgladzeEmail author


Recent development of tissue engineering techniques allows creating and maintaining almost indefinitely networks of excitable cells with desired architecture. We coupled the network of live excitable cardiac cells with a common computer by sensitizing them to light, projecting a light pattern on the layer of cells, and monitoring excitation with the aid of fluorescent probes (optical mapping). As a sensitizing substance we used azobenzene trimethylammonium bromide (AzoTAB). This substance undergoes cis-trans-photoisomerization and trans-isomer of AzoTAB inhibits excitation in the cardiac cells, while cis-isomer does not. AzoTAB-mediated sensitization allows, thus, reversible and dynamic control of the excitation waves through the entire cardiomyocyte network either uniformly, or in a preferred spatial pattern. Technically, it was achieved by coupling a common digital projector with a macroview microscope and using computer graphic software for creating the projected pattern of conducting pathways. This approach allows real time interactive photocontrol of the heart tissue.


JETP Letter Trans Isomer Excitation Wave Spiral Wave Tissue Engineering Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Kuhnert, K. I. Agladze, and V. I. Krinsky, Nature 337, 244 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    A. Adamatzky, B. D. L. Costello, and T. Asai, Reaction-Diffusion Computers (Elsevier, 2005).Google Scholar
  3. 3.
    K. Agladze, N. Magome, R. Alieva, et al., Physica D 106, 247 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    K. Agladze, R. R. Aliev, T. Yamaguchi, and K. Yoshikawa, J. Phys. Chem. 100, 13895 (1996).CrossRefGoogle Scholar
  5. 5.
    O. Steinbock, A. Tóth, and K. Showalter, Science 267, 868 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    I. N. Motoike, K. Yoshikawa, Y. Iguchi, and S. Nakata, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 63, 036220 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    I. N. Motoike and K. Yoshikawa, Chaos Solitons Fractals 17, 455 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    N. Rambidi, K. E. Shamayaev, and P. G. Yu, Phys. Lett. A 298, 375 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    N. Bursac, K. K. Parker, S. Iravanian, and L. Tung, Circ. Res. 91, 45e (2002).CrossRefGoogle Scholar
  10. 10.
    X. Zong, H. Bien, Ch.-Y. Chung, et al., Biomaterials 26, 5330 (2005).CrossRefGoogle Scholar
  11. 11.
    Y. Orlova, N. Magome, L. Liu, et al., Biomaterials 32, 5615 (2011).CrossRefGoogle Scholar
  12. 12.
    J. Park, I. Ch. Kim, J. Baek, et al., Lab Chip 7, 1367 (2007).CrossRefGoogle Scholar
  13. 13.
    N. Magome and K. Agladze, Physica D 239, 1560 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    K. Agladze, M. W. Kay, V. Krinsky, and N. Sarvazyan, Am. J. Physiol.: Heart Circ. Physiol. 293, 503 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Isomura, M. Hörning, K. Agladze, and K. Yoshikawa, Phys. Rev. E 78, 1 (2008).CrossRefGoogle Scholar
  16. 16.
    F. H. Fenton, S. Luther, E. M. Cherry, et al., Circulation 120, 467 (2009).CrossRefGoogle Scholar
  17. 17.
    S. Luther, F. H. Fenton, B. G. Kornreich, et al., Nature 475, 235 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    M. Hörning, A. Isomura, K. Agladze, and K. Yoshikawa, Phys. Rev. E 79, 026218 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Research and Education Center BionanophysicsMoscow Institute of Physics and TechnologyDolgoprudnyi, Moscow regionRussia
  2. 2.Institute for Integrated Cell-Material SciencesKyoto UniversityKyotoJapan

Personalised recommendations