Advertisement

JETP Letters

, Volume 94, Issue 6, pp 459–464 | Cite as

Propagating vibrational excitations in molecular chains

  • V. A. Benderskii
  • E. I. Kats
Article

Abstract

We investigate quantum dynamics of vibrational excitations in one-dimensional (1D) molecular chain. Our model includes nearest neighbor interaction between identical molecular sites and one impurity atom placed in the middle (n = 0). We show that upon exciting the impurity site, its excess energy for relatively long for molecular scales time up to 100 ps is not redistributed uniformly among all other degrees of freedom. On the contrary an excitation propagates along the chain, reflected from the chain ends, and quantum interference of these waves yields to recurrence cycles and echo phenomena. For a critical cycle number k c , echo components of the neighboring cycles start to overlap, and eventually for kk c dynamics looks like chaotic one. The critical cycle number k c depends on the coupling strength 0 ≤ C ≤ 1 of the impurity site with its neighbors n = ±1. k c achieves the maximum for C 2 = 1/2. Our results are in qualitative agreement with experimental data on vibrational excitations in various (CH2) n molecular chains, and besides offer a way for loss-free energy transfer between separated in space reaction centers.

Keywords

Coupling Strength JETP Letter Molecular Chain Impurity State Vibrational Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Davydov, Solitons in Molecular Systems (Kluwer Acad., Dordrecht, Holland, 1985).zbMATHGoogle Scholar
  2. 2.
    A. C. Scott, Phys. Rep. 217, 67 (1992).CrossRefGoogle Scholar
  3. 3.
    A. S. Lagutchev, J. E. Patterson, W. Huang, and D. D. Dlott, J. Phys. Chem. B 109, 5033 (2005).CrossRefGoogle Scholar
  4. 4.
    Z. Wang, J. A. Carter, A. S. Lagutchev, et al., Science 317, 787 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    J. A. Carter, Z. Wang, and D. D. Dlott, Acc. Chem. Res. 42, 1343 (2009).CrossRefGoogle Scholar
  6. 6.
    F. Gai, K. C. Hasson, J. C. McDonald, and P. A. Anfinrud, Science 279, 1886 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    S. Hayashi, E. Tajkhorshid, and K. Shulten, Biophys. J. 85, 1440 (2003).CrossRefGoogle Scholar
  8. 8.
    M. Khalil, N. Demirdoven, and A. Tokmakoff, J. Chem. Phys. 121, 362 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 104, 14190 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    I. V. Rubtsov, Acc. Chem. Res. 42, 1385 (2007).CrossRefGoogle Scholar
  11. 11.
    Z. Lin, P. Keiffer, and I. V. Rubtsov, J. Phys. Chem. 115, 5347 (2011).CrossRefGoogle Scholar
  12. 12.
    F. R. Gantmakher and M. G. Krein, Oscillating Matrices and Kernels and Small Vibrations in Mechanical Systems (Gostekhizdat, Moscow, 1950) [in Russian].Google Scholar
  13. 13.
    C. Domb, Proc. R. Soc. A 276, 418 (1963).ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Z. Lin and B. Li, J. Phys. Soc. Jpn. 76, 074003 (2008).ADSGoogle Scholar
  15. 15.
    V. A. Benderskii, L. A. Falkovsky, and E. I. Kats, JETP Lett. 86, 311 (2007).CrossRefGoogle Scholar
  16. 16.
    V. A. Benderskii, L. N. Gak, and E. I. Kats, J. Exp. Theor. Phys. 108, 159 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    V. A. Benderskii and E. I. Kats, Eur. Phys. J. E 54, 597 (2009).ADSGoogle Scholar
  18. 18.
    R. Zwanzig, Lect. Theor. Phys. 3, 106 (1960).Google Scholar
  19. 19.
    I. M. Lifshitz, Selected Papers, Vol. 1 (Moscow, Nauka, 1987) [in Russian].Google Scholar
  20. 20.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw Hill, New York, 1953), Vol. 2.Google Scholar
  21. 21.
    F. W. J. Olver, Asymptotics and Special Functions (Academic, New York, 1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. A. Benderskii
    • 1
  • E. I. Kats
    • 2
    • 3
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Laue-Langevin InstituteGrenobleFrance
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations