Advertisement

JETP Letters

, 94:177 | Cite as

Enhanced rise of rogue waves in slant wave groups

  • V. P. Ruban
Article

Abstract

Numerical simulations of fully nonlinear equations of motion for long-crested waves at deep water demonstrate that in elongate wave groups the formation of extreme waves occurs most intensively if in an initial state the wave fronts are oriented obliquely to the direction of the group. An “optimal” angle, resulting in the highest rogue waves, depends on initial wave amplitude and group width, and it is about 18–28 degrees in a practically important range of parameters.

Keywords

JETP Letter Rogue Wave Wave Group Extreme Wave Freak Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Kharif and E. Pelinovsky, Eur. J. Mech. B: Fluids 22, 603 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    E. Pelinovsky and C. Kharif, Eur. J. Mech. B: Fluids 25, 535 (2006)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    K. Dysthe, H. E. Krogstad, and P. Muller, Ann. Rev. Fluid Mech. 40, 287 (2008).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    N. Akhmediev and E. Pelinovsky, Eur. Phys. J. Spec. Top. 185, 1 (2010).CrossRefGoogle Scholar
  5. 5.
    Nat. Hazards Earth Syst. Sci., Spec. Iss. on Extreme and Rogue Waves, Ed. by E. Pelinovsky and C. Kharif (2010); http://www.nat-hazards-earth-syst-sci.net.
  6. 6.
    M. Onorato, A. R. Osborne, M. Serio, and S. Bertone, Phys. Rev. Lett. 86, 5831 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    M. Onorato, A. Osborne, R. Fedele, and M. Serio, Phys. Rev. E 67, 046305 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    P. A. E. M. Janssen, J. Phys. Oceanogr. 33, 863 (2003).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    D. H. Peregrine, Adv. Appl. Mech. 16, 9 (1976).zbMATHCrossRefGoogle Scholar
  10. 10.
    I. V. Lavrenov and A. V. Porubov, Eur. J. Mech. B: Fluids 25, 574 (2006).MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    C. Fochesato, S. Grilli, and F. Dias, Wave Motion 44, 395 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    H. Socquet-Juglard, K. Dysthe, K. Trulsen, et al., J. Fluid Mech. 542, 195 (2005).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    O. Gramstad and K. Trulsen, J. Fluid Mech. 582, 463 (2007).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    M. Onorato, T. Waseda, A. Toffoli, et al., Phys. Rev. Lett. 102, 114502 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    M. Onorato, A. R. Osborne, and M. Serio, Phys. Rev. Lett. 96, 014503 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    P. K. Shukla, I. Kourakis, B. Eliasson, et al., Phys. Rev. Lett. 97, 094501 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    A. Toffoli, E. M. Bitner-Gregersen, A. R. Osborne, et al., Geophys. Res. Lett. 38, L06605 (2011).CrossRefGoogle Scholar
  18. 18.
    B. Eliasson and P. K. Shukla, Phys. Rev. Lett. 105, 014501 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, Phys. Rev. Lett. 106, 204502 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    V. E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968).ADSCrossRefGoogle Scholar
  22. 22.
    J. W. McLean, Y. C. Ma, D. U. Martin, et al., Phys. Rev. Lett. 46, 817 (1981).MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, Eur. J. Mech. B: Fluids 21, 283 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    A. I. Dyachenko and V. E. Zakharov, JETP Lett. 81, 255 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    V. E. Zakharov, A. I. Dyachenko, and A. O. Prokofiev, Eur. J. Mech. B: Fluids 25, 677 (2006).MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    A. I. Dyachenko and V. E. Zakharov, JETP Lett. 88, 307 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    K. B. Dysthe, Proc. R. Soc. London A 369, 105 (1979).ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    K. Trulsen and K. B. Dysthe, Wave Motion 24, 281 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    K. Trulsen, I. Kliakhandler, K. B. Dysthe, et al., Phys. Fluids 12, 2432 (2000).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    V. E. Zakharov, Eur. J. Mech. B: Fluids 18, 327 (1999).MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    V. P. Ruban, Phys. Rev. E 71, 055303(R) (2005).MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    V. P. Ruban and J. Dreher, Phys. Rev. E 72, 066303 (2005).MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    V. P. Ruban, Phys. Rev. E 74, 036305 (2006).ADSCrossRefGoogle Scholar
  34. 34.
    V. P. Ruban, Phys. Rev. Lett. 99, 044502 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    V. P. Ruban, Phys. Rev. E 79, 065304(R) (2009); J. Exp. Theor. Phys. 110, 529 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    V. P. Ruban, Eur. Phys. J. Spec. Top. 185, 17 (2010).CrossRefGoogle Scholar
  37. 37.
    J. A. Smith and C. Brulefert, J. Phys. Oceanogr. 40, 67 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations