JETP Letters

, 94:222 | Cite as

Crossovers between superconducting symmetry classes

  • V. A. Koziy
  • M. A. Skvortsov


We study the average density of states in a small metallic grain coupled to two superconductors with the phase difference π, in a magnetic field. The spectrum of the low-energy excitations in the grain is described by the random matrix theory whose symmetry depends on the magnetic field strength and coupling to the superconductors. In the limiting cases, a pure superconducting symmetry class is realized. For intermediate magnetic fields or couplings to the superconductors, the system experiences a crossover between different symmetry classes. With the help of the supersymmetric σ-model we derive the exact expressions for the average density of states in the crossovers between the symmetry classes A-C and CI-C.


JETP Letter Symmetry Class Crossover Region Symmetry Breaking Parameter Spin Rotation Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. L. Mehta, Random Matrices (Academic Press, Boston, 1991).zbMATHGoogle Scholar
  2. 2.
    K. B. Efetov, Adv. Phys. 32, 53 (1983).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge Univ. Press, New York, 1997).zbMATHGoogle Scholar
  4. 4.
    O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    F. J. Dyson, Commun. Math. Phys. 19, 235 (1970).MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    J. J. M. Verbaarschot, Phys. Rev. Lett. 72, 2531 (1994).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    A. Pandey and M. L. Mehta, Commun. Math. Phys. 87, 449 (1983).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    A. Altland, S. Iida, and K. B. Efetov, J. Phys. A: Math. Gen. 26, 3545 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    M. L. Mehta and A. Pandey, J. Phys. A 16, 2655 (1983).MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    V. E. Kravtsov and M. R. Zirnbauer, Phys. Rev. B 46, 4332 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    F. Zhou, P. Charlat, B. Spivak, and B. Pannetier, J. Low Temp. Phys. 110, 841 (1998).CrossRefGoogle Scholar
  13. 13.
    M. A. Skvortsov, V. E. Kravtsov, and M. V. Feigel’man, JETP Lett. 68, 84 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    A. Altland, B. D. Simons, and D. Taras-Semchuk, JETP Lett. 67, 22 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    A. Altland, B. D. Simons, and D. Taras-Semchuk, Adv. Phys. 49, 321 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    R. Bundschuh, C. Cassanello, D. Serban, and M. R. Zirnbauer, Phys. Rev. B 59, 4382 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    P. M. Ostrovsky, M. A. Skvortsov, and M. V. Feigel’man, Phys. Rev. Lett. 87, 027002 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    W. Belzig and Yu. V. Nazarov, Phys. Rev. B 87, 197006 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    C. W. J. Beenakker, Phys. Rev. B 46, 12841 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    F. Constantinescu and H. F. de Groote, J. Math. Phys. 30, 981 (1989).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. A. Koziy
    • 1
  • M. A. Skvortsov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations