Advertisement

JETP Letters

, 94:233 | Cite as

Flat bands in topological media

  • T. T. Heikkilä
  • N. B. Kopnin
  • G. E. Volovik
Article

Abstract

Topological media are systems whose properties are protected by topology and thus are robust to deformations of the system. In topological insulators and superconductors the bulk-surface and bulk-vortex correspondence gives rise to the gapless Weyl, Dirac or Majorana fermions on the surface of the system and inside vortex cores. Here we show that in gapless topological media, the bulk-surface and bulk-vortex correspondence is more effective: it produces topologically protected gapless fermions without dispersion—the fiat band. Fermion zero modes forming the flat band are localized on the surface of topological media with protected nodal lines [A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504(R) (2011); T. T. Heikkil G. E. Volovik, JETP Lett. 93, 59 (2011)] and in the vortex core in systems with topologically protected Fermi points (Weyl points) [G. E. Volovik, JETP Lett. 93, 66 (2011)]. Flat band has an extremely singular density of states, and we show that this property may give rise in particular to surface superconductivity which could exist even at room temperature.

Keywords

JETP Letter Vortex Core Topological Insulator Dirac Point Nodal Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504(R) (2011).ADSCrossRefGoogle Scholar
  2. 2.
    T. T. Heikkil 93, 59 (2011).Google Scholar
  3. 3.
    G. E. Volovik, JETP Lett. 93, 66 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).MATHGoogle Scholar
  5. 5.
    P. Horava, Phys. Rev. Lett. 95, 016 405 (2005).CrossRefGoogle Scholar
  6. 6.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    X.-L. Qi and S.-C. Zhang, arXiv:1008.2026.Google Scholar
  8. 8.
    J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    M. A. Silaev and G. E. Volovik, J. Low Temp. Phys. 161, 460 (2010); arXiv:1005.4672.ADSCrossRefGoogle Scholar
  10. 10.
    T. Fukui and T. Fujiwara, Phys. Rev. B 82, 184536 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Tsutsumi, M. Ichioka, and K. Machida, Phys. Rev. B 83, 094510 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Burkov and L. Balents, “Weyl Semimetal in a Topological Insulator Multilayer,” arXiv:1105.5138.Google Scholar
  14. 14.
    K. Yada, M. Sato, Y. Tanaka, and T. Yokoyama, Phys. Rev. B 83, 064505 (2011); P. M. R. Brydon, A. P. Schnyder, and C. Timm, Phys. Rev. B 84, 020501(R) (2011).ADSCrossRefGoogle Scholar
  15. 15.
    N. B. Kopnin, T. T. Heikkil Rev. B 83, 220503(R) (2011).CrossRefGoogle Scholar
  16. 16.
    N. B. Kopnin, Pis’ma Zh. Eksp. Teor. Fiz. 94, 81 (2011); arXiv:1105.1883.Google Scholar
  17. 17.
    V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  18. 18.
    G. E. Volovik, JETP Lett. 53, 222 (1991).ADSGoogle Scholar
  19. 19.
    G. E. Volovik, “Quantum Phase Transitions from Topology in Momentum Space,” in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Ed. by W. G. Unruh and R. Schützhold, Springer Lecture Notes in Physics 718, 31 (2007); cond-mat/0601372.Google Scholar
  20. 20.
    V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    N. B. Kopnin and M. M. Salomaa, Phys. Rev. B 44, 9667 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    S.-S. Lee, Phys. Rev. D 79, 086006 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    D. Green, L. Santos, and C. Chamon, Phys. Rev. B 82, 075104 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, “Flat Bands in Topological Media,” arXiv:1012.0905.Google Scholar
  27. 27.
    A. M. Essin and V. Gurarie, “Bulk-Boundary Correspondence of Topological Insulators from Their Green’s Functions,” arXiv:1104.1602.Google Scholar
  28. 28.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, et al., Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    J. W. McClure, Carbon 7, 425 (1969).CrossRefGoogle Scholar
  30. 30.
    G. E. Volovik, Exotic Properties of Superfluid 3 He (World Scientific, Singapore, 1992).Google Scholar
  31. 31.
    B. Beri, Phys. Rev. B 81, 134515 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994).ADSCrossRefGoogle Scholar
  33. 33.
    L. Alff, A. Beck, R. Gross, et al., Phys. Rev. B 58, 11197 (1998).ADSCrossRefGoogle Scholar
  34. 34.
    S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys. 63, 1641 (2000).ADSCrossRefGoogle Scholar
  35. 35.
    Yu. V. Kopaev and A. I. Rusinov, Phys. Lett. A 121, 300 (1987).ADSCrossRefGoogle Scholar
  36. 36.
    R. R. da Silva, J. H. S. Torres, and Y. Kopelevich, Phys. Rev. Lett. 87, 147001 (2001).ADSCrossRefGoogle Scholar
  37. 37.
    I. A. Lukyanchuk, Y. Kopelevich, and M. El Marssi, Physica B 404, 404 (2009).ADSCrossRefGoogle Scholar
  38. 38.
    A. Bacsi, A. Virosztek, L. Borda, and B. Dora, Phys. Rev. B 82, 153406 (2010).ADSCrossRefGoogle Scholar
  39. 39.
    O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010).ADSCrossRefGoogle Scholar
  40. 40.
    D. Basu, L. F. Register, D. Reddy, et al., Phys. Rev. B 82, 075409 (2010).ADSCrossRefGoogle Scholar
  41. 41.
    A. A. Abrikosov and S. D. Beneslavskii, Sov. Phys. JETP 32, 699 (1971).ADSGoogle Scholar
  42. 42.
    A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • T. T. Heikkilä
    • 1
  • N. B. Kopnin
    • 1
    • 2
  • G. E. Volovik
    • 1
    • 2
  1. 1.Low Temperature LaboratoryAalto University, School of Science and TechnologyAaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations