JETP Letters

, 94:142 | Cite as

Nature of the electronic states involved in the chemical bonding and superconductivity at high pressure in SnO

  • J. A. McLeod
  • A. V. Lukoyanov
  • E. Z. Kurmaev
  • L. D. Finkelstein
  • A. Moewes


We have investigated the electronic structure and the Fermi surface of SnO using density functional theory calculations within recently proposed exchange-correlation potential (PBE + mBJ) at ambient conditions and high pressures up to 19.3 GPa where superconductivity was observed. It was found that the Sn valence states (5s, 5p, and 5d are strongly hybridized with the O 2p states, and that our density functional theory calculations are in good agreement with O K-edge X-ray spectroscopy measurements for both occupied and empty states. It was demonstrated that the metallic states appearing under pressure in the semiconducting gap stem due to the transformation of the weakly hybridized O 2p-Sn 5sp subband corresponding to the lowest valence state of Sn in SnO. We discuss the nature of the electronic states involved in chemical bonding and formation of the hole and electron pockets with nesting as a possible way to superconductivity.


  1. 1.
    M. K. Forthaus, K. Sengupta, O. Heyer, et al., Phys. Rev. Lett. 105, 157001 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    X. Wang, F. X. Zhang, I. Loa, et al., Phys. Status Solidi B 241, 3168 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    N. E. Christensen, A. Svane, and E. L. Peltzer y Blancá, Phys. Rev. B 72, 014109 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    N. E. Christensen, I. Gorczyc, and A. Svane, J. Phys. Chem. Sol. 67, 1948 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    I. Lefebvre, M. A. Szymanski, J. Olivier-Fourcade, and J. C. Jumas, Phys. Rev. B 58, 1896 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    G. W. Watson, J. Chem. Phys. 114, 758 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    P. Dufek, P. Blaha, and K. Schwarz, Phys. Rev. B 50, 7279 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    J. J. Jia, T. A. Callcott, J. Yurkas, et al., Rev. Sci. Instrum. 66, 1394 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    T. Regier, J. Krochak, T. K. Sham, et al., Nucl. Instrum. Methods Phys. Res. A 582, 93 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    D. W. Boukhvalov, E. Z. Kurmaev, A. Moewes, et al., Phys. Rev. B 67, 134408 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    S. J. Kang, Y. Yi, C. Y. Kim, et al., Appl. Phys. Lett. 86, 232103 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Univ. Wien, Austria, Karlheinz Schwarz, 2001).Google Scholar
  13. 13.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    J. A. McLeod, R. G. Wilks, N. A. Skorikov, Phys. Rev. B 81, 245123 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    J. Guerts, S. Rau, W. Ritcher, and F. J. Schmitte, Thin Solid Films 121, 217 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • J. A. McLeod
    • 1
  • A. V. Lukoyanov
    • 2
    • 3
  • E. Z. Kurmaev
    • 2
  • L. D. Finkelstein
    • 2
  • A. Moewes
    • 1
  1. 1.Department of Physics and Engineering PhysicsUniversity of SaskatchewanSaskatoonCanada
  2. 2.Institute of Metal PhysicsRussian Academy of Sciences, Ural DivisionYekaterinburgRussia
  3. 3.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations