Advertisement

JETP Letters

, 94:47 | Cite as

Monotonic growth of interlayer magnetoresistance in strong magnetic field in very anisotropic layered metals

  • P. D. GrigorievEmail author
Article

Abstract

It is shown that the monotonic part of interlayer electronic conductivity strongly decreases in high magnetic field perpendicular to the conducting layers. Only the coherent interlayer tunneling has been considered, and the obtained result strongly contradicts the standard theory. This effect appears in very anisotropic layered quasi-two-dimensional metals, when the interlayer transfer integral is less than the Landau level separation.

Keywords

JETP Letter Strong Magnetic Field Landau Level Conducting Layer Monotonic Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Shoenberg, Magnetic Oscillations in Metals (Cambridge Univ. Press, Cambridge, 1984).CrossRefGoogle Scholar
  2. 2.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988).Google Scholar
  3. 3.
    J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1972).Google Scholar
  4. 4.
    M. V. Kartsovník and V. G. Peschansky, Low Temp. Phys. 31, 185 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    M. V. Kartsovník, Chem. Rev. 104, 5737 (2004).CrossRefGoogle Scholar
  6. 6.
    T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 2nd ed. (Springer, Berlin, 1998).CrossRefGoogle Scholar
  7. 7.
    J. Wosnitza, Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors (Springer, Berlin, 1996); J. Singleton, Rep. Prog. Phys. 63, 1111 (2000).Google Scholar
  8. 8.
    N. E. Hussey, M. Abdel-Jawad, A. Carrington, et al., Nature 425, 814 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    M. Abdel-Jawad, M. P. Kennett, L. Balicas, et al., Nature Phys. 2, 821 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    M. Abdel-Jawad, J. G. Analytis, L. Balicas, et al., Phys. Rev. Lett. 99, 107002 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    M. P. Kennett and R. H. McKenzie, Phys. Rev. B 76, 054515 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    M. Kuraguchi, E. Ohmichi, T. Osada, and Y. Shiraki, Synth. Met. 133–134, 113 (2003).CrossRefGoogle Scholar
  13. 13.
    K. Yamaji, J. Phys. Soc. Jpn. 58, 1520 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    R. Yagi, Y. Iye, T. Osada, and S. Kagoshima, J. Phys. Soc. Jpn. 59, 3069 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    M. V. Kartsovnik, P. D. Grigoriev, W. Biberacher, et al., Phys. Rev. Lett. 89, 126802 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    P. D. Grigoriev, Phys. Rev. B 67, 144401 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    P. D. Grigoriev, M. V. Kartsovnik, W. Biberacher, et al., Phys. Rev. B 65, 60403(R) (2002).ADSCrossRefGoogle Scholar
  18. 18.
    F. Zuo, X. Su, P. Zhang, et al., Phys. Rev. B 60, 6296 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    W. Kang, Y. J. Jo, D. Y. Noh, et al., Phys. Rev. B 80, 155102 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    J. Hagel, J. Wosnitza, C. Pfleiderer, et al., Phys. Rev. B 68, 104504 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    J. Wosnitza, J. Low Temp. Phys. 146, 641 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    C. H. Wang, X. H. Chen, J. L. Luo, et al., Phys. Rev. B 71, 224515 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    M. V. Kartsovnik, P. D. Grigoriev, W. Biberacher, and N. D. Kushch, Phys. Rev. B 79, 165120 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    J. Wosnitza, J. Hagel, J. S. Qualls, et al., Phys. Rev. B 65, 180506(R) (2002).ADSCrossRefGoogle Scholar
  25. 25.
    V. M. Gvozdikov, Phys. Rev. B 76, 235125 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    U. Lundin and R. H. McKenzie, Phys. Rev. B 68, 081101(R) (2003).ADSCrossRefGoogle Scholar
  27. 27.
    A. F. Ho and A. J. Schofield, Phys. Rev. B 71, 045101 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    D. B. Gutman and D. L. Maslov, Phys. Rev. Lett. 99, 196602 (2007); Phys. Rev. B 77, 035115 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    P. D. Grigoriev, arXiv:1010.0926 (unpublished).Google Scholar
  30. 30.
    P. Moses and R. H. McKenzie, Phys. Rev. B 60, 7998 (1999).ADSCrossRefGoogle Scholar
  31. 31.
    T. Champel and V. P. Mineev, Phys. Rev. B 66, 195111 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    V. M. Gvozdikov, Phys. Rev. B 70, 085113 (2004).ADSCrossRefGoogle Scholar
  33. 33.
    T. Champel and V. P. Mineev, Phys. Rev. B 74, 247101 (2006).ADSCrossRefGoogle Scholar
  34. 34.
    Tsunea Ando, J. Phys. Soc. Jpn. 36, 1521 (1974).ADSCrossRefGoogle Scholar
  35. 35.
    Tsunea Ando, J. Phys. Soc. Jpn. 37, 622 (1974).ADSCrossRefGoogle Scholar
  36. 36.
    E. M. Baskin, L. N. Magarill, and M. V. Entin, Sov. Phys. JETP 48, 365 (1978).ADSGoogle Scholar
  37. 37.
    E. Brezin, D. I. Gross, and C. Itzykson, Nucl. Phys. B 235, 24 (1984).MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    The Quantum Hall Effect, Ed. by R. Prange and S. M. Girvin (Springer, New York, 1987).Google Scholar
  39. 39.
    A. M. Dyugaev, P. D. Grigor’ev, and Yu. N. Ovchinnikov, JETP Lett. 78, 148 (2003).ADSCrossRefGoogle Scholar
  40. 40.
    I. S. Burmistrov and M. A. Skvortsov, JETP Lett. 78, 156 (2003).ADSCrossRefGoogle Scholar
  41. 41.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Nauka, Moscow, 1989; Pergamon, Oxford, 1980).zbMATHGoogle Scholar
  42. 42.
    G. Mahan, Many-Particle Physics, 2nd ed. (Plenum, New York, 1990).CrossRefGoogle Scholar
  43. 43.
    A. S. Alexandrov and A. M. Bratkovsky, Phys. Rev. Lett. 76, 1308 (1996); A. S. Alexandrov and A. M. Bratkovsky, Phys. Lett. A 234, 53 (1997); A. S. Alexandrov and A. M. Bratkovsky, Phys. Rev. B 63, 033105 (2001); M. Nakano, J. Phys. Soc. Jpn. 66, 910 (1997); M. A. Itskovsky, T. Maniv, and I. D. Vagner, Phys. Rev. B 61, 14616 (2000); Masahiro Nakano, Phys. Rev. B 62, 45 (2000); T. Champel, Phys. Rev. B 65, 153403 (2002); M. A. Itskovsky, Phys. Rev. B 68, 054423 (2003); V. M. Gvozdikov, A. G. M. Jansen, D. A. Pesin, et al., Phys. Rev. B 68, 155107 (2003); V. M. Gvozdikov, A. G. M. Jansen, D. A. Pesin, et al., Phys. Rev. B 70, 245114 (2004); Jean-Yves Fortin, E. Perez, and A. Audouard, Phys. Rev. B 71, 155101 (2005); A. S. Alexandrov and V. V. Kabanov, Phys. Rev. B 76, 233101 (2007); I.O. Thomas, V. V. Kabanov, and A. S. Alexandrov, Phys. Rev. B 77, 075434 (2008).ADSCrossRefGoogle Scholar
  44. 44.
    P. Grigoriev, JETP 92, 1090 (2001); T. Champel, Phys. Rev. B 64, 054407 (2001).ADSCrossRefGoogle Scholar
  45. 45.
    N. E. Alekseevskii and V. I. Nizhanovskii, Sov. Phys. JETP 88, 1771 (1985).Google Scholar
  46. 46.
    J. Wosnitza, S. Wanka, J. Hagel, et al., Phys. Rev. B 61, 7383 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations