JETP Letters

, 93:470 | Cite as

Model of the appearance of avalanche bioelectric discharges in neural networks of the brain

  • A. Yu. Simonov
  • V. B. Kazantsev


According to neurobiological experiments, the effect of the appearance of spontaneous bioelectric discharges in neural networks of the brain satisfies the statistics of self-organized criticality. Theoretical investigations indicate that the critical behavior is an optimal regime for the storage and processing of information in the brain. Many model works focused on the approximation of the experimental data and on the investigation of information characteristics of signals, whereas the problem of dynamical mechanisms of their avalanche generation remains almost unstudied. The conditions of the appearance of high-frequency discharges at the critical dynamical threshold have been analyzed in the framework of the biophysical model of the neuronal network. A probabilistic model of the layer-by-layer activation of cells, which makes it possible to estimate the key relations between the parameters for avalanche generation of the discharge, has been proposed.


JETP Letter Critical Behavior Input Pulse Excitation Propagation Avalanche Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D. I. Abarbanel, Rev. Mod. Phys. 78, 1213 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    P. Gong and C. van Leeuwen, Phys. Rev. Lett. 98, 048104 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (MIT, Cambridge, MA, 2007).Google Scholar
  4. 4.
    P. Bak, How Nature Works: The Science of Self-Organized Criticality (Copernicus, New York, 1996).zbMATHGoogle Scholar
  5. 5.
    P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364 (1988).MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    D. R. Chialvo, Physica A 340, 756 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    J. M. Beggs and D. Plenz, J. Neurocsi. 23, 11167 (2003).Google Scholar
  8. 8.
    J. M. Beggs and D. Plenz, J. Neurosci. 24, 5216 (2004).CrossRefGoogle Scholar
  9. 9.
    V. Pasquale, P. Massobrio, L. L. Bologna, et al., J. Neurosci. 4, 1354 (2008).Google Scholar
  10. 10.
    G. Hahn, T. Petermann, M. N. Havenith, et al., J. Neurophysiol. 104, 3312 (2010).CrossRefGoogle Scholar
  11. 11.
    W. L. Shew, H. Yang, S. Yu, et al., J. Neurosci. 31, 55 (2011).CrossRefGoogle Scholar
  12. 12.
    A. Corral, C. J. Perez, A. Diaz-Guilera, and A. Arenas, Phys. Rev. Lett. 74, 118 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    D. Hsu and J. M. Beggs, Neurocomputing 69, 1134 (2006).CrossRefGoogle Scholar
  14. 14.
    L. F. Abbott and R. Rohrkemper, Progress Brain Res. 165, 13 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Levina, J. M. Herrmann, and T. Geisel, Nature Phys. 3, 857 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    M. J. Rasch, K. Schuch, N. K. Logothetis, and W. Maass, J, Neurophysiol. 105, 757 (2011).CrossRefGoogle Scholar
  17. 17.
    M.-O. Gewaltig and M. Diesmann, Scholarpedia 2, 1430 (2007).CrossRefGoogle Scholar
  18. 18.
    E. Maeda, H. P. Robinson, and A. Kawana, J. Neurosci. 15, 6834 (1995).Google Scholar
  19. 19.
    A. Hodgkin and A. Huxley, J. Physiol. 117, 500 (1952).Google Scholar
  20. 20.
    R. Traub and R. Miles, Neuronal Networks of the Hippocampus (Cambridge Univ., Cambridge, UK, 1991).CrossRefGoogle Scholar
  21. 21.
    L. F. Abbott and S. B. Nelson, Nature Neurosci. 3, 1178 (2000).CrossRefGoogle Scholar
  22. 22.
    S. J. Martin, P. D. Grimwood, and R. G. M. Morris, Ann. Rev. Neurosci. 23, 649 (2000).CrossRefGoogle Scholar
  23. 23.
    M. Tsodyks, A. Uziel, and H. Markram, J. Neurosci. 20, RC50 (2000).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Nizhni Novgorod State UniversityNizhni NovgorodRussia

Personalised recommendations