Advertisement

JETP Letters

, Volume 93, Issue 6, pp 344–348 | Cite as

Soft topological objects in topological media

  • J. I. Väyrynen
  • G. E. Volovik
Methods of Theoretical Physics

Abstract

Topological invariants in terms of the Green’s function in momentum and real space determine properties of smooth textures within topological media. In space dimension d = 1 the topological invariant N 3 in terms of the Green’s function Open image in new window (ω, k x , x) determines the fermion number of the kink, while in space dimension d = 3 the topological invariant N 5 in terms of the Green’s function Open image in new window (ω, k x , k y , k z , z) determines quantization of Hall conductivity in the soliton plane within the topological insulators.

Keywords

Soliton Domain Wall Grand Unify Theory Topological Insulator Hall Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Ishikawa and T. Matsuyama, Z. Phys. C 33, 41 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    K. Ishikawa and T. Matsuyama, Nucl. Phys. B 280, 523 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    T. Matsuyama, Progr. Theor. Phys. 77, 711 (1987).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    G. E. Volovik and V. M. Yakovenko, J. Phys. Cond. Matter 1, 5263 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    V. M. Yakovenko, Fizika (Zagreb) 21(Suppl. 3), 231 (1989); cond-mat/9703195.Google Scholar
  6. 6.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003).MATHGoogle Scholar
  7. 7.
    Zhong Wang, Xiao-Liang Qi, and Shou-Cheng Zhang, Phys. Rev. Lett. 105, 256803 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    M. Golterman, K. Jansen, and D. Kaplan, Phys. Lett. B 301, 219 (1993); arXiv:hep-lat/9209003.ADSCrossRefGoogle Scholar
  9. 9.
    D. L. Bergman, arXiv:1101.4233.Google Scholar
  10. 10.
    Hong Yao and Dung-Hai Lee, arXiv:1003.2230.Google Scholar
  11. 11.
    V. P. Mineev and G. E. Volovik, Phys. Rev. B 18, 3197 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    A. M. Turner, Yi Zhang, R. S. K. Mong, and A. Vishwanath, arXiv:1010.4335.Google Scholar
  13. 13.
    G. E. Volovik, JETP Lett. 91, 55 (2010); arXiv:0912.0502.ADSCrossRefGoogle Scholar
  14. 14.
    M. M. Salomaa and G. E. Volovik, Phys. Rev. B 37, 9298 (1988).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    G. E. Volovik, JETP Lett. 90, 587 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    T. Vachaspati, Kinks and Domain An Introduction to Classical and Quantum Solitons (Cambridge Univ., Cambridge, 2006).MATHCrossRefGoogle Scholar
  17. 17.
    F. Wilczek, Phys. Rev. Lett. 58, 1799 (1987).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    M. A. Silaev and G. E. Volovik, J. Low Temp. Phys. 161, 460 (2010); arXiv:1005.4672ADSCrossRefGoogle Scholar
  19. 19.
    G. E. Volovik and V. P. Mineev, JETP 56, 579 (1982).Google Scholar
  20. 20.
    P. G. Grinevich and G. E. Volovik, J. Low Temp. Phys. 72, 371 (1988).ADSCrossRefGoogle Scholar
  21. 21.
    J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    V. Gurarie, Phys. Rev. B 83, 085426 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    G. Rosenberg and M. Franz, Phys. Rev. B 82, 035105 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    Xiao-Liang Qi, Taylor L. Hughes, and Shou-Cheng Zhang, Phys. Rev. B 78, 195424 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev. Lett. 102, 146805 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    Kuang-Ting Chen and Patrick A. Lee, arXiv:1012.2084.Google Scholar
  27. 27.
    M. Z. Hasan and J. E. Moore, arXiv:1011.5462.Google Scholar
  28. 28.
    R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    W. P. Su, J. R. Schrieffer, and A. Heeger, Phys. Rev. Lett. 42, 1698 (1979).ADSCrossRefGoogle Scholar
  30. 30.
    J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47, 986 (1981).MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 35, 1440 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Low Temperature LaboratoryAalto University School of ScienceAaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations