JETP Letters

, Volume 93, Issue 4, pp 226–232 | Cite as

Superelasticity and the propagation of shock waves in crystals

  • N. A. Inogamov
  • V. V. Zhakhovskii
  • V. A. Khokhlov
  • V. V. Shepelev
Condensed Matter


The separation of a shock wave into an elastic precursor and a plastic wave is a characteristic phenomenon occurring only in solid media. The existence of the elastic shock wave at pressures p ≈ 10 GPa, which is one or two orders of magnitude higher than the dynamic elastic limit, has been detected in recent numerical calculations and a femtosecond laser experiment. The plastic shock wave has no time to be formed in these ultrashort waves at p ≈ 10 GPa. The processes of the formation and propagation of the elastic and plastic waves in aluminum at higher pressures obtained by means of femtosecond lasers have been analyzed in this work. It has been found that the elastic precursor survives even under the conditions when the pressure behind the plastic front reaches a giant value p ∼ 1 Mbar at which the melting of the metal begins. It has been shown that superelasticity should be taken into account to correctly interpret the preceding laser experiments.


Shock Wave JETP Letter Pump Pulse Elastic Zone Plastic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Evans, A. D. Badger, F. Fallies, et al., Phys. Rev. Lett. 77, 3359 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    K. T. Gahagan, D. S. Moore, D. J. Funk, et al., Phys. Rev. Lett. 85, 3205 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, J. Opt. Soc. Am. B 23, 1954 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    M. B. Agranat, N. E. Andreev, S. I. Ashitkov, et al., Pis’ma Zh. Eksp. Teor. Fiz. 85, 328 (2007) [JETP Lett. 85, 271 (2007)].Google Scholar
  5. 5.
    Li Huang, Yanqiang Yang, Yinghui Wang, et al., J. Phys. D 42, 045502 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    S. I. Ashitkov, M. B. Agranat, G. I. Kanel’, et al., Pis’ma Zh. Eksp. Teor. Fiz. 92, 568 (2010) [JETP Lett. 92, 516 (2010)].Google Scholar
  7. 7.
    V. V. Zhakhovskii and N. A. Inogamov, Pis’ma Zh. Eksp. Teor. Fiz. 92, 574 (2010) [JETP Lett. 92, 521 (2010)].Google Scholar
  8. 8.
    M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, et al., Pis’ma Zh. Eksp. Teor. Fiz. 91, 517 (2010) [JETP Lett. 91, 471 (2010)].zbMATHGoogle Scholar
  9. 9.
    B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, Phys. Rev. B 82, 064113 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    G. I. Kanel’, S. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, 2004).Google Scholar
  11. 11.
    High-Pressure Shock Compression of Solids, Ed. by J. R. Asay and M. Shahinpoor (Springer, 1993).Google Scholar
  12. 12.
    G. I. Kanel’, V. E. Fortov, and S. V. Razorenov, Usp. Fiz. Nauk 177, 809 (2007) [Phys. Usp. 50, 771 (2007)].CrossRefGoogle Scholar
  13. 13.
    T. Antoun, L. Seaman, D. R. Curran, et al., Spall Fracture (Springer, 2003).Google Scholar
  14. 14.
    M. M. Budzevich, V. V. Zhakhovsky, I. I. Oleynik, and C. T. White, Phys. Rev. B (in preparation).Google Scholar
  15. 15.
    S. I. Anisimov, N. A. Inogamov, Yu. V. Petrov, et al., Appl. Phys. A 92, 797 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    V. V. Zhakhovsky, M. M. Budzevich, N. A. Inogamov, et al., Science (in preparation).Google Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).Google Scholar
  18. 18.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vols. 1 and 2 (2nd ed., Nauka, Moscow, 1966; Academic, New York, 1966, 1967).Google Scholar
  19. 19.
    A. M. Molodets, Teplofiz. Vysok. Temp. 40, 521 (2002).Google Scholar
  20. 20.
    J. N. Johnson and L. M. Barker, J. Appl. Phys. 40, 4321 (1969).ADSCrossRefGoogle Scholar
  21. 21.
    N. A. Inogamov, V. V. Zhakhovsky, S. I. Ashitkov, et al., Contr. Plasma Phys., DOI: 10.1002/ctpp.201010111.Google Scholar
  22. 22.
    D. F. Price, R. M. More, R. S. Walling, et al., Phys. Rev. Lett. 75, 252 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor Francis, London, 1993).Google Scholar
  24. 24.
    R. F. Trunin, in High-Pressure Shock Compression of Solids VII, Ed. by V. E. Fortov et al. (Springer, New York, 2004).Google Scholar
  25. 25.
    J. C. Slater, Introduction to Chemical Physics (McGraw-Hill, New York, London, 1939).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. A. Inogamov
    • 1
  • V. V. Zhakhovskii
    • 2
    • 3
  • V. A. Khokhlov
    • 1
  • V. V. Shepelev
    • 4
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  3. 3.Department of PhysicsUniversity of South FloridaTampaUSA
  4. 4.Institute for Computer Aided DesignRussian Academy of SciencesMoscowRussia

Personalised recommendations