Advertisement

JETP Letters

, Volume 93, Issue 3, pp 174–177 | Cite as

The lattices with the continuous vorticity as a model for fractional quantum hall effect

  • S. V. Iordanski
Methods of Theoretical Physics
  • 45 Downloads

Abstract

It was shown that the including spin of 2d electrons at high magnetic field is possible to remove the divergences in the cores of the vortex lattice and construct the topologically stable states. These states can be considered as the lattices of skyrmions where the unit cell is mapped on the whole sphere of spin directions. That gives the gapped ground state for electrons and can be used as a model for fractional quantum Hall effect.

Keywords

Vortex JETP Letter Ground State Energy High Magnetic Field Vortex Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Quantum Hall Effect, Ed. by R. Prange and S. Girvin (Springer, New York, 1987; Mir, Moscow, 1989).Google Scholar
  2. 2.
    New Perspective in Quantum Hall Effect, Ed. by Das Sarma and A. Pinczuk (Wiley, New York, 1997).Google Scholar
  3. 3.
    R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).CrossRefADSGoogle Scholar
  4. 4.
    S. V. Iordanski, JETP Lett. 89, 362 (2009).CrossRefADSGoogle Scholar
  5. 5.
    S. V. Iordanski and D. S. Lyubshin, J. Phys: Condens. Matter 21, 405601 (2009).CrossRefGoogle Scholar
  6. 6.
    J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).CrossRefADSGoogle Scholar
  7. 7.
    M. M. Salomaa and G. E. Volovik, Rev. Mod. Phys. 59, 533 (1987).CrossRefADSGoogle Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, vol. 3 of Course of the Theoretical Physics (Fizmatlit, Moscow, 1989; Pergamon, New York, 1986).Google Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continious Matter, vol. 8 of Course of the Theoretical Physics (Fizmatlit, Moscow, 1978; Pergamon, New York, 1984).Google Scholar
  10. 10.
    R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam, 1982; Mir, Moscow, 1985).MATHGoogle Scholar
  11. 11.
    E. T. Whitaker and E. T. Watson, Course of Modern Analysis (Cambridge Univ., Cambridge, 1927; Moscow, Fizmatlit, 1963).Google Scholar
  12. 12.
    E. M. Lifshitz and L. P. Pitaevski, Statistical Physics II, vol. 9 of Course of the Theoretical Physics (Fizmatlit, Moscow, 1978; Pergamon, New York, 2002).Google Scholar
  13. 13.
    E. Brown, Phys. Rev. A 134, 1602 (1964).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. V. Iordanski
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations