Advertisement

JETP Letters

, Volume 93, Issue 2, pp 66–69 | Cite as

Flat band in the core of topological defects: Bulk-vortex correspondence in topological superfluids with Fermi points

  • G. E. Volovik
Condensed Matter

Abstract

We discuss the dispersionless spectrum with zero energy in the linear topological defects—vortices. The flat band emerges inside the vortex living in the bulk medium containing topologically stable Fermi points in momentum space. The boundaries of the flat band in the vortex are determined by projections of the Fermi points in bulk to the vortex axis. This bulk-vortex correspondence for flat band is similar to the bulk-surface correspondence discussed earlier in the media with topologically protected lines of zeroes. In the latter case the flat band emerges on the surface of the system, and its boundary is determined by projection of the bulk nodal line on the surface.

Keywords

Vortex Vortex Core Topological Charge Topological Defect Point Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).CrossRefADSGoogle Scholar
  2. 2.
    M. A. Silaev and G. E. Volovik, J. Low Temp. Phys. 161, 460 (2010); arXiv:1005.4672.CrossRefADSGoogle Scholar
  3. 3.
    T. Fukui and T. Fujiwara, arXiv:1009.2582.Google Scholar
  4. 4.
    A. P. Schnyder and Shinsei Ryu, arXiv:1011.1438.Google Scholar
  5. 5.
    T. T. Heikkil’ma Zh. Eksp. Teor. Fiz. 93, 63 (2011) [JETP Lett. 93, 59 (2011)]; arXiv:1011.4185.Google Scholar
  6. 6.
    V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  7. 7.
    G. E. Volovik, JETP Lett. 53, 222 (1991).ADSGoogle Scholar
  8. 8.
    G. E. Volovik, in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Ed. by W. G. Unruh and R. Schützhold, Springer Lecture Notes in Physics 718, 31 (2007); cond-mat/0601372.Google Scholar
  9. 9.
    V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010).CrossRefADSGoogle Scholar
  10. 10.
    N. B. Kopnin and M. M. Salomaa, Phys. Rev. B 44, 9667 (1991).CrossRefADSGoogle Scholar
  11. 11.
    G. E. Volovik, JETP Lett. 59, 830 (1994).ADSGoogle Scholar
  12. 12.
    T. Sh. Misirpashaev and G. E. Volovik, Physica B 210, 338 (1995).CrossRefADSGoogle Scholar
  13. 13.
    F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006).CrossRefADSGoogle Scholar
  14. 14.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, et al., Rev. Mod. Phys. 81, 109 (2009).CrossRefADSGoogle Scholar
  15. 15.
    Sung-Sik Lee, Phys. Rev. D 79, 086006 (2009).CrossRefADSGoogle Scholar
  16. 16.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).MATHGoogle Scholar
  17. 17.
    Y. Nishida, Phys. Rev. D 81, 074004 (2010).CrossRefADSGoogle Scholar
  18. 18.
    Y. Nishida, L. Santos, and C. Chamon, Phys. Rev. B 82, 144513 (2010).CrossRefADSGoogle Scholar
  19. 19.
    R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).CrossRefADSGoogle Scholar
  20. 20.
    P. G. Grinevich and G. E. Volovik, J. Low Temp. Phys. 72, 371 (1988).CrossRefADSGoogle Scholar
  21. 21.
    M. M. Salomaa and G. E. Volovik, Phys. Rev. B 37, 9298 (1988).CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Low Temperature LaboratoryAalto University, School of Science and TechnologyAALTOFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations