Advertisement

JETP Letters

, Volume 93, Issue 2, pp 59–65 | Cite as

Dimensional crossover in topological matter: Evolution of the multiple Dirac point in the layered system to the flat band on the surface

  • T. T. Heikkilä
  • G. E. Volovik
Condensed Matter

Abstract

We consider the dimensional crossover in the topological matter, which involves the transformation of different types of topologically protected zeroes in the fermionic spectrum. In the considered case, the multiple Dirac (Fermi) point in quasi 2-dimensional system evolves into the flat band on the surface of the 3-dimensional system when the number of atomic layers increases. This is accompanied by formation of the spiral nodal lines in the bulk. We also discuss the topological quantum phase transition at which the surface flat band shrinks and changes its chirality, while the nodal spiral changes its helicity.

Keywords

JETP Letter Topological Charge Topological Insulator Dirac Point Nodal Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).zbMATHGoogle Scholar
  2. 2.
    P. Hořava, Phys. Rev. Lett. 95, 016405 (2005).CrossRefADSGoogle Scholar
  3. 3.
    V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  4. 4.
    G. E. Volovik, JETP Lett. 53, 222 (1991).ADSGoogle Scholar
  5. 5.
    G. E. Volovik, in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Ed. by W. G. Unruh and R. Schützhold, Springer Lecture Notes in Physics 718, 31 (2007); cond-mat/0601372.Google Scholar
  6. 6.
    V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010).CrossRefADSGoogle Scholar
  7. 7.
    N. B. Kopnin and M. M. Salomaa, Phys. Rev. B 44, 9667 (1991).CrossRefADSGoogle Scholar
  8. 8.
    G. E. Volovik, JETP Lett. 59, 830 (1994).ADSGoogle Scholar
  9. 9.
    T. Sh. Misirpashaev and G. E. Volovik, Physica B 210, 338 (1995).CrossRefADSGoogle Scholar
  10. 10.
    Sung-Sik Lee, Phys. Rev. D 79, 086006 (2009).CrossRefADSGoogle Scholar
  11. 11.
    F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006).CrossRefADSGoogle Scholar
  12. 12.
    A. P. Schnyder and Shinsei Ryu, arXiv:1011.1438.Google Scholar
  13. 13.
    G. E. Volovik and V. A. Konyshev, JETP Lett. 47, 250 (1988).ADSGoogle Scholar
  14. 14.
    J. L. Manes, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B 75, 155424 (2007).CrossRefADSGoogle Scholar
  15. 15.
    P. Dietl, F. Piechon, and G. Montambaux, Phys. Rev. Lett. 100, 236405 (2008); G. Montambaux, F. Piechon, J.-N. Fuchs, and M. O. Goerbig, Eur. Phys. J. B 72, 509 (2009); arXiv:0907.0500.CrossRefADSGoogle Scholar
  16. 16.
    Y. D. Chong, X. G. Wen, and M. Soljacic, Phys. Rev. B 77, 235125 (2008).CrossRefADSGoogle Scholar
  17. 17.
    S. Banerjee, R. R. Singh, V. Pardo, and W. E. Pickett, Phys. Rev. Lett. 103, 016402 (2009).CrossRefADSGoogle Scholar
  18. 18.
    K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009).CrossRefADSGoogle Scholar
  19. 19.
    L. Fu, arXiv:1010.1802.Google Scholar
  20. 20.
    T. T. Heikkil’ma Zh. Eksp. Teor. Fiz. 92, 751 (2010) [JETP Lett. 92, 681 (2010)]; arXiv:1010.0393.Google Scholar
  21. 21.
    G. E. Volovik, JETP Lett. 73, 162 (2001); hep-ph/0101286.CrossRefADSGoogle Scholar
  22. 22.
    F. R. Klinkhamer and G. E. Volovik, Int. J. Mod. Phys. A 20, 2795 (2005); hep-th/0403037.CrossRefzbMATHADSGoogle Scholar
  23. 23.
    V. Gurarie, arXiv:1011.2273.Google Scholar
  24. 24.
    T. D. Stanescu, V. Galitski, and S. Das Sarma, Phys. Rev. A 82, 013608 (2010).CrossRefADSGoogle Scholar
  25. 25.
    J. W. McClure, Carbon 7, 425 (1969).CrossRefGoogle Scholar
  26. 26.
    P. G. Grinevich and G. E. Volovik, J. Low Temp. Phys. 72, 371 (1988).CrossRefADSGoogle Scholar
  27. 27.
    J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).CrossRefADSGoogle Scholar
  28. 28.
    M. A. Silaev and G. E. Volovik, J. Low Temp. Phys. 161, 460 (2010); arXiv:1005.4672.CrossRefADSGoogle Scholar
  29. 29.
    G. E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 93, 69 (2011) [JETP Lett. 93, 66 (2011)]; arXiv:1011.4665.Google Scholar
  30. 30.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).CrossRefADSGoogle Scholar
  31. 31.
    Xiao-Liang Qi and Shou-Cheng Zhang, arXiv:1008.2026.Google Scholar
  32. 32.
    T. T. Heikkilpnin, and G. E. Volovik, arXiv:1012.0905.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Low Temperature LaboratoryAalto University, School of Science and TechnologyAALTOFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations