JETP Letters

, Volume 93, Issue 2, pp 47–51 | Cite as

A remark on the three approaches to 2D quantum gravity

  • A. BelavinEmail author
  • M. Bershtein
  • G. Tarnopolsky
Fields, Particles, and Nuclei


The one-matrix model is considered. The generating function of the correlation numbers is defined in such a way that this function coincides with the generating function of the Liouville gravity. Using the Kontsevich theorem we explain that this generating function is an analytic continuation of the generating function of the Topological gravity. We check the topological recursion relations for the correlation functions in the p-critical Matrix model.


Modulus Space Matrix Model JETP Letter Marked Point Liouville Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. H. Ginsparg and G. W. Moore, hep-th/9304011.Google Scholar
  2. 2.
    P. Di Francesco, P. H. Ginsparg, and J. Zinn-Justin, Phys. Rep. 254, 1 (1995); hep-th/9306153.CrossRefADSGoogle Scholar
  3. 3.
    A. A. Belavin and A. B. Zamolodchikov, J. Phys. A 42, 304004 (2009); arxiv:0811.0450.CrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Belavin and G. Tarnopolsky, arxiv:1006.2056v1.Google Scholar
  5. 5.
    V. Belavin, arxiv:10105508v1.Google Scholar
  6. 6.
    A. Belavin and Al. Zamolodchikov, Theor. Math. Phys. 147, 729 (2006); hep-th/0510214.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    D. J. Gross and A. Migdal, Nucl. Phys. B 340, 333 (1990).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    E. Witten, Surv. Diff. Geom. 1, 243 (1991).MathSciNetGoogle Scholar
  9. 9.
    M. Kontsevich, Comm. Math. Phys. 147, 1 (1992).CrossRefzbMATHMathSciNetADSGoogle Scholar
  10. 10.
    E. Getzler, math.AG/9801003.Google Scholar
  11. 11.
    A. B. Zamolodchikov (unpublished).Google Scholar
  12. 12.
    B. Eynard and N. Orantin, math-ph/0702045.Google Scholar
  13. 13.
    M. Bergere and B. Eynard, arXiv:0909.0854v1.Google Scholar
  14. 14.
    Al. B. Zamolodchikov, Theor. Math. Phys. 142, 183 (2005); hep-th/0505063v1.zbMATHMathSciNetGoogle Scholar
  15. 15.
    E. Witten, Nucl. Phys. B 340, 281 (1990).CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    S. K. Lando and A. K. Zvonkin, Graphs on Surfaces and Their Applications (Springer, Berlin, 2004).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Independent University of MoscowMoscowRussia

Personalised recommendations