JETP Letters

, Volume 93, Issue 1, pp 10–14 | Cite as

Low-temperature conductance of the weak junction in InAs nanowire in the field of AFM scanning gate

  • A. A. Zhukov
  • Ch. Volk
  • A. Winden
  • H. Hardtdegen
  • Th. Schäpers
Condensed Matter

Abstract

We have investigated the conductance of an InAs nanowire in the presence of an electrical potential created by an AFM scanning gate at liquid helium temperature. The influence of the direction of a local electrical field on the tunneling rate through a weak junction in the InAs wire is clearly observed. To explain this behavior, the redistribution of the electrons among conductive channels in the wire must be taken into account. We have confirmed that the pattern of Coulomb blockade diamonds gives the same result for the ratio of quantum dot sizes as that revealed by scanning gate imaging.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. C. Ford, J. C. Ho, Yu-Lun Chueh, et al., Nano Lett., 9 360 (2009).CrossRefADSGoogle Scholar
  2. 2.
    C. Thelander, T. Martensson, M. T. Bjork, et al., Appl. Phys. Lett. 83, 2052 (2003).CrossRefADSGoogle Scholar
  3. 3.
    Th. Richter, Ch. Blomers, H. Luth, et al., Nano Lett. 8, 2834 (2008).CrossRefADSGoogle Scholar
  4. 4.
    M. Scheffler, S. Nadj-Perge, Leo P. Kouwenhoven, et al., J. Appl. Phys. 106, 124303 (2009).CrossRefADSGoogle Scholar
  5. 5.
    C. A. Mead and W. G. Spitzer, Phys. Rev. Lett. 10, 471 (1963).CrossRefADSGoogle Scholar
  6. 6.
    X. Zhou, S. A. Dayeh, D. Aplin, et al., Appl. Phys. Lett. 89, 053113 (2006).CrossRefADSGoogle Scholar
  7. 7.
    R. Crook, C. G. Smith, A. C. Graham, et al., Phys. Rev. Lett. 91, 246803 (2003).CrossRefADSGoogle Scholar
  8. 8.
    A. Pioda, S. Kicin, T. Ihn, et al., Phys. Rev. Lett. 93, 216801 (2004).CrossRefADSGoogle Scholar
  9. 9.
    P. Fallahi, A. C. Bleszynski, R. M. Westervelt, et al., Nano Lett. 5, 223 (2005).CrossRefADSGoogle Scholar
  10. 10.
    R. Crook, A. C. Graham, Ch. G. Smith, et al., Nature 424, 751 (1991).CrossRefADSGoogle Scholar
  11. 11.
    M. A. Topinka, B. J. LeRoy, S. E. J. Shaw, et al., Science 289, 2323 (2000).CrossRefADSGoogle Scholar
  12. 12.
    M. T. Woodside and P. L. McEuen, Science 296, 1098 (2002).CrossRefADSGoogle Scholar
  13. 13.
    A. A. Zhukov and G. Finkelstein, JETP Lett. 89, 212 (2009).CrossRefADSGoogle Scholar
  14. 14.
    S. Schnez, J. Güttinger, M. Huefner, et al., Phys. Rev. B 82, 165445 (2010).CrossRefADSGoogle Scholar
  15. 15.
    A. C. Bleszynski, F. A. Zwanenburg, R. M. Westervelt, et al., Nano Lett. 7, 2559 (2005).CrossRefADSGoogle Scholar
  16. 16.
    E. P. A. M. Bakkers, J. A. VanDam, S. DeFrancheschi, et al., Nat. Mater. 3, 769 (2004).CrossRefADSGoogle Scholar
  17. 17.
    A. A. Zhukov, Instrum. Exp. Tech. 51, 130 (2008).CrossRefGoogle Scholar
  18. 18.
    I. M. Ruzin, V. Chandrasechar, E. I. Levin, et al., Phys. Rev. B 45, 13469 (1992).CrossRefADSGoogle Scholar
  19. 19.
    F. R. Waugh, M. J. Berry, D. J. Mar, et al., Phys. Rev. Lett. 75, 705 (1995).CrossRefADSGoogle Scholar
  20. 20.
    A. A. Zhukov, Ch. Volk, and Th. Schäpers, Preprint “Application of the Rearrangeable Local Coulomb Potential Profile for Investigation of Conductivity of InAs Wires.”Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. A. Zhukov
    • 1
  • Ch. Volk
    • 2
    • 3
  • A. Winden
    • 2
    • 3
  • H. Hardtdegen
    • 2
    • 3
  • Th. Schäpers
    • 2
    • 3
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Institute of Bio- and Nanosystems (IBN-1): Semiconductor NanoelectronicsJülichGermany
  3. 3.JARA-Fundamentals of Future Information TechnologyResearch Centre JülichJülichGermany

Personalised recommendations