JETP Letters

, Volume 92, Issue 12, pp 799–803 | Cite as

Dynamic susceptibility of a spin ice near the critical point

  • A. V. Shtyk
  • M. V. Feigel’man
Condensed Matter


We consider spin ice magnets (primarily, Dy2Ti2O7 in the vicinity of their critical point on the (H, T) plane. We find that the longitudinal susceptibility diverges at the critical point, leading to the behavior qualitatively similar to the one which would result from non-zero conductance of magnetic charges. We show that dynamics of critical fluctuations belongs to the universality class of easy-axis ferroelectric and calculate logarithmic corrections (within two-loop approximation) to the mean-field critical behavior.


JETP Letter Logarithmic Correction Dynamic Susceptibility Virial Expansion Loop Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. P. Gingras, arXiv:0903.2772.Google Scholar
  2. 2.
    L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935).CrossRefGoogle Scholar
  3. 3.
    C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature 451, 42 (2008).CrossRefADSGoogle Scholar
  4. 4.
    L. Onsager, J. Chem. Phys. 2, 599 (1934).CrossRefADSGoogle Scholar
  5. 5.
    S. T. Bramwell, S. R. Giblin, S. Calder, et al., Nature 461, 956 (2009).CrossRefADSGoogle Scholar
  6. 6.
    E. M. Lifshits and L. P. Pitaevski, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Nauka, Moscow, 1978; Pergamon, New York, 1980).Google Scholar
  7. 7.
    I. A. Ryzhkin, J. Exp. Theor. Phys. 101, 481 (2005).CrossRefADSGoogle Scholar
  8. 8.
    P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8, 423 (1973).CrossRefADSGoogle Scholar
  9. 9.
    P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).CrossRefADSGoogle Scholar
  10. 10.
    V. V. Lebedev, Macroscopic Fluctuation Effects in Condensed Matter (Nauka, Moscow, 2004) [in Russian].Google Scholar
  11. 11.
    Y. Tabata, H. Kadowaki, K. Matsuhira, et al., Phys. Rev. Lett. 97, 257205 (2006).CrossRefADSGoogle Scholar
  12. 12.
    A. I. Larkin and D. E. Khmelnytsky, Zh. Eksp. Teor. Fiz. 56, 2087 (1969) [Sov. Phys. JETP 29, 1123 (1969)].Google Scholar
  13. 13.
    R. Moessner and S. L. Sondhi, Phys. Rev. B 68, 064411 (2003).CrossRefADSGoogle Scholar
  14. 14.
    V. Kobelev, A. B. Kolomeisky, and M. E. Fisher, arXiv:cond-mat/0112238v1 (2001).Google Scholar
  15. 15.
    M. Toda, R. Kubo, and N. Saito, Statistical Physics I (Springer, 1998).Google Scholar
  16. 16.
    M. Udagawa, M. Ogata, and Z. Hiroi, J. Phys. Soc. Jpn. 71, 2365 (2002).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. V. Shtyk
    • 1
    • 2
  • M. V. Feigel’man
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow regionRussia

Personalised recommendations