JETP Letters

, Volume 92, Issue 11, pp 762–766 | Cite as

Microscopic theory of phase slip in a narrow durty superconducting strip

  • A. V. Semenov
  • P. A. Krutitskii
  • I. A. Devyatov
Condensed Matter

Abstract

Phase slip in a narrow durty superconducting strip is studied theoretically using the Usadel formalism. Coordinate-dependent Green’s functions corresponding to the saddle point of the trajectory in the configuration space have been calculated, and the dependence of the free energy barrier on the transport current, magnetic field, and temperature has been obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. S. Golubev and A. D. Zaikin, Phys. Rev. B 64, 014504–1 (2001).CrossRefADSGoogle Scholar
  2. 2.
    D. S. Golubev and A. D. Zaikin, Phys. Rev. B 78, 144502–1 (2008).CrossRefADSGoogle Scholar
  3. 3.
    A. Zharov, A. Lopatin, A. E. Koshelev, et al., Phys. Rev. Lett. 98, 197005–1 (2007).CrossRefADSGoogle Scholar
  4. 4.
    Yu. N. Ovchinnikov and A. A. Varlamov, arxiv 0910.2659v1 [cond-mat.supr-con].Google Scholar
  5. 5.
    J. S. Langer and V. Amegaokar, Phys. Rev. 164, 498 (1967).CrossRefADSGoogle Scholar
  6. 6.
    D. E. McCumber and B. I. Halperin, Phys. Rev. B 1, 1054 (1970).CrossRefADSGoogle Scholar
  7. 7.
    K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).CrossRefADSGoogle Scholar
  8. 8.
    A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 73, 299 (1977) [Sov. Phys. JETP 46, 155 (1977)].ADSGoogle Scholar
  9. 9.
    G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 61, 1254 (1971) [Sov. Phys. JETP 34, 668 (1971)].Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).Google Scholar
  11. 11.
    Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Leningrad, 1975), Ch. 7, pp. 1, 2 [in Russian].Google Scholar
  12. 13.
    G. Eilenberger, Zeitschr. Phys. 214, 195 (1968).CrossRefADSGoogle Scholar
  13. 14.
    K. Yu. Arutyunov, D. S. Golubev, and A. D. Zaikin, Phys. Rep. 464, 1 (2008).CrossRefADSGoogle Scholar
  14. 15.
    W. Belzig, F. Wilhelm, C. Bruder, et al., Superlatt. Microstruct. 25, 1251 (1999).CrossRefADSGoogle Scholar
  15. 16.
    K. Maki, in Superconductivity, Ed. by R. D. Parks (Marcel Dekker, New York, 1969), p. 1035.Google Scholar
  16. 18.
    B. I. Ivlev and N. B. Kopnin, Usp. Fiz. Nauk 138, 342 (1982) [Sov. Phys. Usp. 25, 772 (1982)].CrossRefGoogle Scholar
  17. 19.
    L. Kramer and A. Baratoff, Phys. Rev. Lett. 38, 518 (1977).CrossRefADSGoogle Scholar
  18. 20.
    B. I. Ivlev and N. B. Kopnin, Pis’ma Zh. Eksp. Teor. Fiz. 28, 649 (1978) [JETP Lett. 28, 599 (1978)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. V. Semenov
    • 1
  • P. A. Krutitskii
    • 2
  • I. A. Devyatov
    • 3
  1. 1.Moscow State Pedagogical UniversityMoscowRussia
  2. 2.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  3. 3.Research Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations