Advertisement

JETP Letters

, Volume 92, Issue 10, pp 696–702 | Cite as

Out-of-equilibrium admittance of single electron box under strong Coulomb blockade

  • Ya. I. RodionovEmail author
  • I. S. Burmistrov
Condensed Matter

Abstract

We study admittance and energy dissipation in an out-of-equilibrium single electron box. The system consists of a small metallic island coupled to a massive reservoir via single tunneling junction. The potential of electrons in the island is controlled by an additional gate electrode. The energy dissipation is caused by an AC gate voltage. The case of a strong Coulomb blockade is considered. We focus on the regime when electron coherence can be neglected but quantum fluctuations of charge are strong due to Coulomb interaction. We obtain the admittance under the specified conditions. It turns out that the energy dissipation rate can be expressed via charge relaxation resistance and renormalized gate capacitance even out of equilibrium. We suggest the admittance as a tool for a measurement of the bosonic distribution corresponding collective excitations in the system.

Keywords

JETP Letter Gate Voltage Energy Dissipation Rate Coulomb Blockade Thermo Electricity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Schön and A. Zaikin, Phys. Rep. 198, 237 (1990).CrossRefADSGoogle Scholar
  2. 2.
    Z. Phys. B Condens. Matter 85, 317 (1991), Special Issue on Single Charge Tunneling, Ed. by H. Grabert and H. Horner.CrossRefGoogle Scholar
  3. 3.
    Single Charge Tunneling, Ed. by H. Grabert and M. H. Devoret (Plenum, New York, 1992).Google Scholar
  4. 4.
    I. Aleiner, P. Brouwer, and L. Glazman, Phys. Rep. 358, 309 (2002).CrossRefADSGoogle Scholar
  5. 5.
    L. I. Glazman and M. Pustilnik, in New Directions in Mesoscopic Physics (Towards Nanoscience), Ed. by R. Fazio, G. F. Gantmakher, and Y. Imry (Kluwer, Dordrecht, 2003).Google Scholar
  6. 6.
    D. M. Basko and V. E. Kravtsov, Phys. Rev. Lett. 93, 056804 (2004); Phys. Rev. B 71, 085311 (2005).CrossRefADSGoogle Scholar
  7. 7.
    D. Bagrets and F. Pistolesi, Phys. Rev. B 75, 165315 (2007).CrossRefADSGoogle Scholar
  8. 8.
    A. Altland and F. Egger, Phys. Rev. Lett. 102, 026805 (2009).CrossRefADSGoogle Scholar
  9. 9.
    T. T. Heikkilä and Yu. V. Nazarov, Phys. Rev. Lett. 102, 130605 (2009); M. A. Laakso, T. T. Heikkil Yu. V. Nazarov, Phys. Rev. Lett. 104, 196805 (2010); M. A. Laakso, T. T. Heikkil, and Yu. V. Nazarov, arxiv:1009.3400.CrossRefADSGoogle Scholar
  10. 10.
    D. V. Averin and J. P. Pekola, Phys. Rev. Lett. 104, 220601 (2010).CrossRefADSGoogle Scholar
  11. 11.
    Ya. I. Rodionov, I. S. Burmistrov, and N. M. Chtchelkatchev, Phys. Rev. B 82, 155317 (2010).CrossRefADSGoogle Scholar
  12. 12.
    F. Giazotto, T. T. Heikkil et al., Rev. Mod. Phys. 78, 217 (2006).CrossRefADSGoogle Scholar
  13. 13.
    R. Scheibner et al., New J. Phys. 10, 08306 (2008).CrossRefGoogle Scholar
  14. 14.
    E. A. Hoffmann et al., Nano Lett. 9, 779 (2009).CrossRefADSGoogle Scholar
  15. 15.
    I. S. Beloborodov, K. B. Efetov, A. Altland, and F. W. J. Hekking, Phys. Rev. B 63, 115109 (2001); K. B. Efetov and A. Tschersich, Phys. Rev. B 67,174205 (2003).CrossRefADSGoogle Scholar
  16. 16.
    M. Büttiker, H. Thomas, and A. Pretre, Phys. Lett. A 180, 364 (1993).CrossRefADSGoogle Scholar
  17. 17.
    M. Büttiker and A. M. Martin, Phys. Rev. B 61, 2737 (2000).CrossRefADSGoogle Scholar
  18. 18.
    S. E. Nigg, R. López, and M. Büttiker, Phys. Rev. Lett. 97, 206804 (2006); M. Büttiker and S. E. Nigg, Phys. Rev. B 77, 085312 (2008).CrossRefADSGoogle Scholar
  19. 19.
    J. Gabelli, G. Feve, J. M. Berroir, et al., Science 313, 499 (2006).CrossRefADSGoogle Scholar
  20. 20.
    Z. Ringel, Y. Imry, and O. Entin-Wohlman, Phys. Rev. B 78, 165304 (2008).CrossRefADSGoogle Scholar
  21. 21.
    Hee Chul Park and Kang-Hun Ahn, Phys. Rev. Lett. 101, 116804 (2008).CrossRefADSGoogle Scholar
  22. 22.
    F. Persson, C. M. Wilson, M. Sandberg, et al., Nano Lett. 10, 953 (2010).CrossRefADSGoogle Scholar
  23. 23.
    C. Mora and K. Le Hur, Nature Phys. 6, 697 (2010).CrossRefADSGoogle Scholar
  24. 24.
    Ya. I. Rodionov, I. S. Burmistrov, and A. S. Ioselevich, Phys. Rev. B 80, 035332 (2009).CrossRefADSGoogle Scholar
  25. 25.
    R. Landauer, IBM J. Res. Dev. 1, 223 (1957).CrossRefMathSciNetGoogle Scholar
  26. 26.
    A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1963).zbMATHGoogle Scholar
  27. 27.
    G. Mahan, Many Particle Physics (Plenum, New York, 2000).Google Scholar
  28. 28.
    A. Kamenev and A. Levchenko, Adv. Phys. 58, 197 (2009).CrossRefADSGoogle Scholar
  29. 29.
    K. A. Matveev, Sov. Phys. JETP 72, 892 (1991).Google Scholar
  30. 30.
    A. Petkovi, N. M. Chtchelkatchev, T. I. Baturina, and V. M. Vinokur, Phys. Rev. Lett. 105, 187003 (2010).CrossRefADSGoogle Scholar
  31. 31.
    I. S. Burmistrov and A. M. M. Pruisken, Phys. Rev. Lett. 101, 056801 (2008); I. S. Burmistrov and A. M. M. Pruisken, Phys. Rev. B 81, 085428 (2010).CrossRefADSGoogle Scholar
  32. 32.
    E. Ben-Jacob, E. Mottola, and G. Schön, Phys. Rev. Lett. 51, 2064 (1983); C. Wallisser et al., Phys. Rev. B 66, 125314 (2002).CrossRefADSGoogle Scholar
  33. 33.
    H. Schoeller and G. Schön, Phys. Rev. B 50, 18436 (1994).CrossRefADSGoogle Scholar
  34. 34.
    Ya. I. Rodionov and I. S. Burmistrov, in preparation.Google Scholar
  35. 35.
    N. S. Wingreen and Y. Meir, Phys. Rev. B 49, 11040 (1993).CrossRefADSGoogle Scholar
  36. 36.
    P. Wölfle, A. Rosch, J. Paaske, and J. Kroha, Adv. Solid State Phys. 42, 175 (2002).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations