Skip to main content
Log in

Thermodynamic and kinetic properties of nonideal Rydberg matter

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Theoretical investigations of the properties of Rydberg matter, more precisely, a nonideal ultracold plasma, which is one of the forms of this matter, are reviewed. Monte Carlo and molecular dynamics studies indicate that structures with both short- and long-range orders can be formed and that the recombination coefficient in the case of strong nonideality, can be several orders of magnitude smaller than that under ideal conditions. These and other results obtained in the past several years are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Kadomtsev and M. B. Kadomtsev, Usp. Fiz. Nauk 167, 649 (1997) [Phys. Usp. 40, 623 (1997)].

    Article  Google Scholar 

  2. L. P. Pitaevskii, Usp. Fiz. Nauk 168, 641 (1998) [Phys. Usp. 41, 569 (1998)].

    Article  Google Scholar 

  3. L. P. Pitaevskii, Usp. Fiz. Nauk 176, 345 (2006) [Phys. Usp. 49, 333 (2006)].

    Article  Google Scholar 

  4. E. A. Manykin, M. I. Ozhovan, and P. P. Poluektov, Dokl. Akad. Nauk SSSR 260, 1096 (1981) [Sov. Phys. Dokl. 26, 974 (1981)].

    Google Scholar 

  5. E. A. Manykin, M. I. Ozhovan, and P. P. Poluektov, Zh. Eksp. Teor. Fiz. 84, 442 (1983) [Sov. Phys. JETP 57, 256 (1983)].

    Google Scholar 

  6. E. A. Manykin, M. I. Ozhovan, and P. P. Poluektov, Zh. Eksp. Teor. Fiz. 102, 804 (1992) [Sov. Phys. JETP 75, 440 (1992)].

    Google Scholar 

  7. E. A. Manykin, M. I. Ozhovan, and P. P. Poluektov, Khim. Fiz. 18, 88 (1999).

    Google Scholar 

  8. C. Aman, J. B. C. Pettersson, and L. Holmlid, Chem. Phys. 147, 189 (1990).

    Article  Google Scholar 

  9. R. S. Svensson, L. Holmlid, and L. Lundgren, J. Appl. Phys. 70, 1489 (1991).

    Article  ADS  Google Scholar 

  10. C. Aman, J. B. C. Pettersson, H. Lindroth, and L. Holmlid, J. Matter Res. 7, 100 (1992).

    Article  ADS  Google Scholar 

  11. R. Svenson and L. Holmlid, Phys. Rev. Lett. 83, 1739 (1999).

    Article  ADS  Google Scholar 

  12. T. Rice, J. Hensel, T. Phillips, and G. Thomas, The Electron-Hole Liquid in Semiconductors: Theoretical Aspects, Experimental Aspects (Academic, New York, 1977; Mir, Moscow, 1980).

    Google Scholar 

  13. L. V. Keldysh, in Excitons in Semiconductors (Nauka, Moscow, 1971), p. 5 [in Russian].

    Google Scholar 

  14. S. G. Tikhodeev, Usp. Fiz. Nauk 145, 3 (1985) [Sov. Phys. Usp. 28, 1 (1985)].

    Google Scholar 

  15. E. A. Manykin, M. I. Ozhovan, and P. P. Poluektov, Poverkhnost’ 9, 110 (1985).

    Google Scholar 

  16. L. Holmlid and E. A. Manykin, Zh. Eksp. Teor. Fiz. 111, 1601 (1997) [J. Exp. Theor. Phys. 84, 875 (1997)].

    Google Scholar 

  17. V. I. Yarygin, V. N. Sidel’nikov, I. I. Kasikov, et al., Pis’ma Zh. Eksp. Teor. Fiz. 77, 330 (2003) [JETP Lett. 77, 280 (2003)].

    Google Scholar 

  18. T. C. Killian, S. Kulin, S. D. Bergeson, et al., Phys. Rev. Lett. 83, 4776 (1999).

    Article  ADS  Google Scholar 

  19. S. Kulin, T. C. Killian, S. D. Bergeson, and S. L. Rolston, Phys. Rev. Lett. 85, 318 (2000).

    Article  ADS  Google Scholar 

  20. T. C. Killian, M. J. Lim, S. Kulin, et al., Phys. Rev. Lett. 86, 3759 (2001).

    Article  ADS  Google Scholar 

  21. M. P. Robinson, B. L. Tolra, M. W. Noel, et al., Phys. Rev. Lett. 85, 4466 (2000).

    Article  ADS  Google Scholar 

  22. J. P. Morisson, C. J. Rennick, J. S. Keller, and E. R. Grant, Phys. Rev. Lett. 101, 205005 (2008).

    Article  ADS  Google Scholar 

  23. J. P. Morisson, C. J. Rennick, and E. R. Grant, Phys. Rev. A 79, 062706 (2009).

    Article  ADS  Google Scholar 

  24. J. L. Roberts, C. D. Fertig, M. J. Lim, and S. L. Rolston, Phys. Rev. Lett. 92, 25 (2004).

    Google Scholar 

  25. C. E. Simien, Y. C. Chen, T. C. Killian, et al., Phys. Rev. Lett. 93, 265003 (2004).

    Article  ADS  Google Scholar 

  26. E. A. Cummings, J. E. Daily, D. S. Durfee, and S. D. Bergeson, Phys. Rev. Lett. 95, 235001 (2005).

    Article  ADS  Google Scholar 

  27. R. S. Fletcher, X. L. Zhang, and R. S. Rolston, Phys. Rev. Lett. 99, 145001 (2007).

    Article  ADS  Google Scholar 

  28. P. Gupta, S. Laha, C. E. Simien, et al., Phys. Rev. Lett. 99, 075005 (2007).

    Article  ADS  Google Scholar 

  29. J. Castro, H. Gao, and T. C. Killian, Plasma Phys. Control. 50, 124011 (2008).

    Article  ADS  Google Scholar 

  30. Y. N. Martinez de Escobar, P. G. Mickelson, P. Pellegrini, et al., Phys. Rev. A 78, 062708 (2008).

    Article  ADS  Google Scholar 

  31. A. Denning, S. D. Bergeson, and R. Robisheax, Phys. Rev. A 80, 033415 (2009).

    Article  ADS  Google Scholar 

  32. M. S. Murillo, Phys. Rev. Lett. 87, 11 (2001).

    Article  Google Scholar 

  33. S. G. Kuzmin and T. M. O’Nail, Phys. Rev. Lett. 88, 065003 (2002).

    Article  ADS  Google Scholar 

  34. F. Robicheaux and J. D. Hanson, Phys. Rev. Lett. 88, 5 (2002).

    Article  Google Scholar 

  35. A. N. Tkachev and S. I. Yakovlenko, Kvant. Elektron. 31, 1084 (2001) [Quantum Electron. 31, 1084 (2001)].

    Article  ADS  Google Scholar 

  36. S. I. Yakovlenko and A. N. Tkachev, Laser Phys. 11, 977 (2001).

    Google Scholar 

  37. T. Pohl, T. Pattard, and J. M. Rost, Phys. Rev. A 70, 033416 (2004).

    Article  ADS  Google Scholar 

  38. T. Pohl and T. Pattard, J. Phys. A 39, 4571 (2006).

    Article  ADS  Google Scholar 

  39. T. Pohl, T. Pattard, and J. M. Rost, Phys. Rev. Lett. 94, 205003 (2005).

    Article  ADS  Google Scholar 

  40. A. P. Gavrilyuk, I. V. Krasnov, and N. Ya. Shaparev, Pis’ma Zh. Eksp. Teor. Fiz. 75, 497 (2002) [JETP Lett. 75, 423 (2002)].

    Google Scholar 

  41. L. Gao, R. H. Lu, and S. S. Han, Phys. Rev. E 81, 046406 (2010).

    Article  ADS  Google Scholar 

  42. Y. Hahn, Phys. Lett. E 64, 046409 (2001).

    ADS  Google Scholar 

  43. Y. Hahn, Phys. Lett. A 293, 266 (2002).

    Article  ADS  Google Scholar 

  44. A. Bobrov, E. A. Manykin, B. B. Zelener, and B. V. Zelener, Laser Phys. 17, 415 (2007).

    Article  ADS  Google Scholar 

  45. A. A. Bobrov, S. Ya. Bronin, B. B. Zelener, et al., Zh. Eksp. Teor. Fiz. 134, 179 (2008) [J. Exp. Theor. Phys. 107, 147 (2008)].

    Google Scholar 

  46. A. A. Bobrov, B. B. Zelener, B. V. Zelener, and D. R. Khikhlukha, in Proceedings of the Internal Conference on Equations of Substance State, Nal’chik (2010), p. 154.

  47. A. A. Bobrov, S. Ya. Bronin, B. B. Zelener, et al., Zh. Eksp. Teor. Fiz. (in press).

  48. S. A. Ivanenko, E. A. Manykin, G. V. Naidis, et al., Laser Phys. 17, 419 (2007).

    Article  ADS  Google Scholar 

  49. B. B. Zelener, B. V. Zelener, S. A. Ivanenko, et al., Teplofiz. Vys. Temp. 46, 504 (2008) [High Temp. 46, 457 (2008)].

    Google Scholar 

  50. B. B. Zelener, B. V. Zelener, E. A. Manykin, and D. R. Khikhlukha, Fiz. Obrazov. Vuzakh 16, 2 (2010).

    Google Scholar 

  51. B. B. Zelener, B. V. Zelener, and E. A. Manykin, J. Exp. Theor. Phys. 99, 1173 (2004).

    Article  ADS  Google Scholar 

  52. V. S. Filinov, E. A. Manykin, B. B. Zelener, and B. V. Zelener, Laser Phys. 14, 186 (2004).

    Google Scholar 

  53. M. Bonits, B. B. Zelener, B. V. Zelener, et al., Zh. Eksp. Teor. Fiz. 125, 821 (2004) [J. Exp. Theor. Phys. 98, 719 (2004)].

    Google Scholar 

  54. M. A. Butlitsky, V. E. Fortov, E. A. Manykin, et al., Laser Phys. 15, 1 (2005).

    Google Scholar 

  55. M. A. Butlitskii, B. B. Zelener, B. V. Zelener, and E. A. Manykin, Zh. Vysch. Mat. Mat. Fiz. 48, 156 (2008) [Comp. Math. Math. Phys. 48, 147 (2008)].

    MathSciNet  Google Scholar 

  56. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Consultant Bureau, New York, 1987; Nauka, Moscow, 1982).

    Book  Google Scholar 

  57. S. A. Maiorov, A. N. Tkachev, and S. N. Yakovlenko, Usp. Fiz. Nauk 164, 297 (1994) [Phys. Usp. 37, 279 (1994)].

    Article  Google Scholar 

  58. S. I. Yakovlenko, El. Zh. Issledovano v Rossii 23, 304 (2000).

    Google Scholar 

  59. A. V. Lankin and G. E. Norman, J. Phys. A 42, 214032 (2009).

    Article  ADS  Google Scholar 

  60. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981), p. 207.

    Google Scholar 

  61. V. S. Vorob’ev and A. L. Khomkin, Fiz. Plazmy 3, 885 (1977) [Sov. J. Plasma Phys. 3, 499 (1977)].

    Google Scholar 

  62. V. S. Vorob’ev and A. L. Khomkin, Teor. Mat. Fiz. 26, 364 (1976).

    Google Scholar 

  63. E. P. Wigner, Phys. Rev. 98, 145 (1955).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 42, 1326 (1962) [Sov. Phys. JETP 15, 919 (1962)].

    Google Scholar 

  65. A. V. Gurevich and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 46, 1281 (1964) [Sov. Phys. JETP 19, 870 (1964)].

    Google Scholar 

  66. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Dokl. Akad. Nauk SSSR 296, 577 (1987) [Sov. Phys. Dokl. 32, 752 (1987)].

    Google Scholar 

  67. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions (Springer, Berlin, Heidelberg, 1998).

    Book  Google Scholar 

  68. L. Vriens and A. H. Smeets, Phys. Rev. A 22, 940 (1980).

    Article  ADS  Google Scholar 

  69. B. M. Smirnov, Atomic Collisions and Elementary Processes in Plasma (Atomizdat, Moscow, 1968) [in Russian].

    Google Scholar 

  70. P. Mansbach and J. C. Keck, Phys. Rev. 181, 275 (1969).

    Article  ADS  Google Scholar 

  71. T. Pohl, D. Vrinceanu, and H. R. Sadeghpour, Phys. Rev. Lett. 100, 223201 (2008).

    Article  ADS  Google Scholar 

  72. J.-F. Delpech, J. Boulmer, and F. Devos, J. Phys. (France) 40, 215 (1979).

    Article  Google Scholar 

  73. J.-F. Delpech, J. Boulmer, and F. Devos, Phys. Rev. Lett. 39, 1400 (1977).

    Article  ADS  Google Scholar 

  74. B. V. Zelener, G. E. Norman, and V. S. Filinov, Perturbation Theory and Pseudopotential in Statistical Thermodynamics (Nauka, Moscow, 1981).

    Google Scholar 

  75. V. M. Zamalin, G. E. Norman, and V. S. Filinov, The Monte Carlo Method in Statistical Thermodynamics (Nauka, Moscow, 1977).

    Google Scholar 

  76. V. S. Filinov, V. E. Fortov, and M. Bonits, Pis’ma Zh. Eksp. Teor. Fiz. 72, 361 (2000) [JETP Lett. 72, 245 (2000)].

    Google Scholar 

  77. S. Filinov, V. E. Fortov, M. Bonitz, and D. Kremp, Phys. Lett. 274, 228 (2000).

    Article  Google Scholar 

  78. V. S. Filinov, M. Bonitz, W. Ebeling, and V. E. Fortov, Plasma Phys. Control. Fusion 43, 743 (2001).

    Article  ADS  Google Scholar 

  79. V. S. Filinov, V. E. Fortov, M. Bonits, and P. R. Levashov, Pis’ma Zh. Eksp. Teor. Fiz. 74, 422 (2001) [JETP Lett. 74, 384 (2001)].

    Google Scholar 

  80. V. S. Filinov, W. M. Bonitz, P. Levashov, et al., J. Phys. A.: Math. Gen. 36, 6069 (2003).

    Article  ADS  MATH  Google Scholar 

  81. B. V. Zelener, G. E. Norman, and V. S. Filinov, Teplofiz. Vys. Temp. 10, 1160 (1972).

    Google Scholar 

  82. B. V. Zelener, G. E. Norman, and V. S. Filinov, Teplofiz. Vys. Temp. 13, 712 (1975).

    ADS  Google Scholar 

  83. B. V. Zelener, G. E. Norman, and V. S. Filinov, Teplofiz. Vys. Temp. 13, 913 (1975).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.A. Manykin, B.B. Zelener, B.V. Zelener, 2010, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 92, No. 9, pp. 696–712.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manykin, E.A., Zelener, B.B. & Zelener, B.V. Thermodynamic and kinetic properties of nonideal Rydberg matter. Jetp Lett. 92, 630–645 (2010). https://doi.org/10.1134/S0021364010210125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010210125

Keywords

Navigation