JETP Letters

, Volume 92, Issue 9, pp 630–645 | Cite as

Thermodynamic and kinetic properties of nonideal Rydberg matter

  • E. A. Manykin
  • B. B. Zelener
  • B. V. Zelener
Scientific Summaries

Abstract

Theoretical investigations of the properties of Rydberg matter, more precisely, a nonideal ultracold plasma, which is one of the forms of this matter, are reviewed. Monte Carlo and molecular dynamics studies indicate that structures with both short- and long-range orders can be formed and that the recombination coefficient in the case of strong nonideality, can be several orders of magnitude smaller than that under ideal conditions. These and other results obtained in the past several years are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. B. Kadomtsev and M. B. Kadomtsev, Usp. Fiz. Nauk 167, 649 (1997) [Phys. Usp. 40, 623 (1997)].CrossRefGoogle Scholar
  2. 2.
    L. P. Pitaevskii, Usp. Fiz. Nauk 168, 641 (1998) [Phys. Usp. 41, 569 (1998)].CrossRefGoogle Scholar
  3. 3.
    L. P. Pitaevskii, Usp. Fiz. Nauk 176, 345 (2006) [Phys. Usp. 49, 333 (2006)].CrossRefGoogle Scholar
  4. 4.
    E. A. Manykin, M. I. Ozhovan, and P. P. Poluektov, Dokl. Akad. Nauk SSSR 260, 1096 (1981) [Sov. Phys. Dokl. 26, 974 (1981)].Google Scholar
  5. 5.
    E. A. Manykin, M. I. Ozhovan, and P. P. Poluektov, Zh. Eksp. Teor. Fiz. 84, 442 (1983) [Sov. Phys. JETP 57, 256 (1983)].Google Scholar
  6. 6.
    E. A. Manykin, M. I. Ozhovan, and P. P. Poluektov, Zh. Eksp. Teor. Fiz. 102, 804 (1992) [Sov. Phys. JETP 75, 440 (1992)].Google Scholar
  7. 7.
    E. A. Manykin, M. I. Ozhovan, and P. P. Poluektov, Khim. Fiz. 18, 88 (1999).Google Scholar
  8. 8.
    C. Aman, J. B. C. Pettersson, and L. Holmlid, Chem. Phys. 147, 189 (1990).CrossRefGoogle Scholar
  9. 9.
    R. S. Svensson, L. Holmlid, and L. Lundgren, J. Appl. Phys. 70, 1489 (1991).ADSCrossRefGoogle Scholar
  10. 10.
    C. Aman, J. B. C. Pettersson, H. Lindroth, and L. Holmlid, J. Matter Res. 7, 100 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    R. Svenson and L. Holmlid, Phys. Rev. Lett. 83, 1739 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    T. Rice, J. Hensel, T. Phillips, and G. Thomas, The Electron-Hole Liquid in Semiconductors: Theoretical Aspects, Experimental Aspects (Academic, New York, 1977; Mir, Moscow, 1980).Google Scholar
  13. 13.
    L. V. Keldysh, in Excitons in Semiconductors (Nauka, Moscow, 1971), p. 5 [in Russian].Google Scholar
  14. 14.
    S. G. Tikhodeev, Usp. Fiz. Nauk 145, 3 (1985) [Sov. Phys. Usp. 28, 1 (1985)].Google Scholar
  15. 15.
    E. A. Manykin, M. I. Ozhovan, and P. P. Poluektov, Poverkhnost’ 9, 110 (1985).Google Scholar
  16. 16.
    L. Holmlid and E. A. Manykin, Zh. Eksp. Teor. Fiz. 111, 1601 (1997) [J. Exp. Theor. Phys. 84, 875 (1997)].Google Scholar
  17. 17.
    V. I. Yarygin, V. N. Sidel’nikov, I. I. Kasikov, et al., Pis’ma Zh. Eksp. Teor. Fiz. 77, 330 (2003) [JETP Lett. 77, 280 (2003)].Google Scholar
  18. 18.
    T. C. Killian, S. Kulin, S. D. Bergeson, et al., Phys. Rev. Lett. 83, 4776 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    S. Kulin, T. C. Killian, S. D. Bergeson, and S. L. Rolston, Phys. Rev. Lett. 85, 318 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    T. C. Killian, M. J. Lim, S. Kulin, et al., Phys. Rev. Lett. 86, 3759 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    M. P. Robinson, B. L. Tolra, M. W. Noel, et al., Phys. Rev. Lett. 85, 4466 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    J. P. Morisson, C. J. Rennick, J. S. Keller, and E. R. Grant, Phys. Rev. Lett. 101, 205005 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    J. P. Morisson, C. J. Rennick, and E. R. Grant, Phys. Rev. A 79, 062706 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    J. L. Roberts, C. D. Fertig, M. J. Lim, and S. L. Rolston, Phys. Rev. Lett. 92, 25 (2004).Google Scholar
  25. 25.
    C. E. Simien, Y. C. Chen, T. C. Killian, et al., Phys. Rev. Lett. 93, 265003 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    E. A. Cummings, J. E. Daily, D. S. Durfee, and S. D. Bergeson, Phys. Rev. Lett. 95, 235001 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    R. S. Fletcher, X. L. Zhang, and R. S. Rolston, Phys. Rev. Lett. 99, 145001 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    P. Gupta, S. Laha, C. E. Simien, et al., Phys. Rev. Lett. 99, 075005 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    J. Castro, H. Gao, and T. C. Killian, Plasma Phys. Control. 50, 124011 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    Y. N. Martinez de Escobar, P. G. Mickelson, P. Pellegrini, et al., Phys. Rev. A 78, 062708 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    A. Denning, S. D. Bergeson, and R. Robisheax, Phys. Rev. A 80, 033415 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    M. S. Murillo, Phys. Rev. Lett. 87, 11 (2001).CrossRefGoogle Scholar
  33. 33.
    S. G. Kuzmin and T. M. O’Nail, Phys. Rev. Lett. 88, 065003 (2002).ADSCrossRefGoogle Scholar
  34. 34.
    F. Robicheaux and J. D. Hanson, Phys. Rev. Lett. 88, 5 (2002).CrossRefGoogle Scholar
  35. 35.
    A. N. Tkachev and S. I. Yakovlenko, Kvant. Elektron. 31, 1084 (2001) [Quantum Electron. 31, 1084 (2001)].ADSCrossRefGoogle Scholar
  36. 36.
    S. I. Yakovlenko and A. N. Tkachev, Laser Phys. 11, 977 (2001).Google Scholar
  37. 37.
    T. Pohl, T. Pattard, and J. M. Rost, Phys. Rev. A 70, 033416 (2004).ADSCrossRefGoogle Scholar
  38. 38.
    T. Pohl and T. Pattard, J. Phys. A 39, 4571 (2006).ADSCrossRefGoogle Scholar
  39. 39.
    T. Pohl, T. Pattard, and J. M. Rost, Phys. Rev. Lett. 94, 205003 (2005).ADSCrossRefGoogle Scholar
  40. 40.
    A. P. Gavrilyuk, I. V. Krasnov, and N. Ya. Shaparev, Pis’ma Zh. Eksp. Teor. Fiz. 75, 497 (2002) [JETP Lett. 75, 423 (2002)].Google Scholar
  41. 41.
    L. Gao, R. H. Lu, and S. S. Han, Phys. Rev. E 81, 046406 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    Y. Hahn, Phys. Lett. E 64, 046409 (2001).ADSGoogle Scholar
  43. 43.
    Y. Hahn, Phys. Lett. A 293, 266 (2002).ADSCrossRefGoogle Scholar
  44. 44.
    A. Bobrov, E. A. Manykin, B. B. Zelener, and B. V. Zelener, Laser Phys. 17, 415 (2007).ADSCrossRefGoogle Scholar
  45. 45.
    A. A. Bobrov, S. Ya. Bronin, B. B. Zelener, et al., Zh. Eksp. Teor. Fiz. 134, 179 (2008) [J. Exp. Theor. Phys. 107, 147 (2008)].Google Scholar
  46. 46.
    A. A. Bobrov, B. B. Zelener, B. V. Zelener, and D. R. Khikhlukha, in Proceedings of the Internal Conference on Equations of Substance State, Nal’chik (2010), p. 154.Google Scholar
  47. 47.
    A. A. Bobrov, S. Ya. Bronin, B. B. Zelener, et al., Zh. Eksp. Teor. Fiz. (in press).Google Scholar
  48. 48.
    S. A. Ivanenko, E. A. Manykin, G. V. Naidis, et al., Laser Phys. 17, 419 (2007).ADSCrossRefGoogle Scholar
  49. 49.
    B. B. Zelener, B. V. Zelener, S. A. Ivanenko, et al., Teplofiz. Vys. Temp. 46, 504 (2008) [High Temp. 46, 457 (2008)].Google Scholar
  50. 50.
    B. B. Zelener, B. V. Zelener, E. A. Manykin, and D. R. Khikhlukha, Fiz. Obrazov. Vuzakh 16, 2 (2010).Google Scholar
  51. 51.
    B. B. Zelener, B. V. Zelener, and E. A. Manykin, J. Exp. Theor. Phys. 99, 1173 (2004).ADSCrossRefGoogle Scholar
  52. 52.
    V. S. Filinov, E. A. Manykin, B. B. Zelener, and B. V. Zelener, Laser Phys. 14, 186 (2004).Google Scholar
  53. 53.
    M. Bonits, B. B. Zelener, B. V. Zelener, et al., Zh. Eksp. Teor. Fiz. 125, 821 (2004) [J. Exp. Theor. Phys. 98, 719 (2004)].Google Scholar
  54. 54.
    M. A. Butlitsky, V. E. Fortov, E. A. Manykin, et al., Laser Phys. 15, 1 (2005).Google Scholar
  55. 55.
    M. A. Butlitskii, B. B. Zelener, B. V. Zelener, and E. A. Manykin, Zh. Vysch. Mat. Mat. Fiz. 48, 156 (2008) [Comp. Math. Math. Phys. 48, 147 (2008)].MathSciNetGoogle Scholar
  56. 56.
    L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Consultant Bureau, New York, 1987; Nauka, Moscow, 1982).CrossRefGoogle Scholar
  57. 57.
    S. A. Maiorov, A. N. Tkachev, and S. N. Yakovlenko, Usp. Fiz. Nauk 164, 297 (1994) [Phys. Usp. 37, 279 (1994)].CrossRefGoogle Scholar
  58. 58.
    S. I. Yakovlenko, El. Zh. Issledovano v Rossii 23, 304 (2000).Google Scholar
  59. 59.
    A. V. Lankin and G. E. Norman, J. Phys. A 42, 214032 (2009).ADSCrossRefGoogle Scholar
  60. 60.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981), p. 207.Google Scholar
  61. 61.
    V. S. Vorob’ev and A. L. Khomkin, Fiz. Plazmy 3, 885 (1977) [Sov. J. Plasma Phys. 3, 499 (1977)].Google Scholar
  62. 62.
    V. S. Vorob’ev and A. L. Khomkin, Teor. Mat. Fiz. 26, 364 (1976).Google Scholar
  63. 63.
    E. P. Wigner, Phys. Rev. 98, 145 (1955).MathSciNetADSCrossRefMATHGoogle Scholar
  64. 64.
    L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 42, 1326 (1962) [Sov. Phys. JETP 15, 919 (1962)].Google Scholar
  65. 65.
    A. V. Gurevich and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 46, 1281 (1964) [Sov. Phys. JETP 19, 870 (1964)].Google Scholar
  66. 66.
    L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Dokl. Akad. Nauk SSSR 296, 577 (1987) [Sov. Phys. Dokl. 32, 752 (1987)].Google Scholar
  67. 67.
    V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions (Springer, Berlin, Heidelberg, 1998).CrossRefGoogle Scholar
  68. 68.
    L. Vriens and A. H. Smeets, Phys. Rev. A 22, 940 (1980).ADSCrossRefGoogle Scholar
  69. 69.
    B. M. Smirnov, Atomic Collisions and Elementary Processes in Plasma (Atomizdat, Moscow, 1968) [in Russian].Google Scholar
  70. 70.
    P. Mansbach and J. C. Keck, Phys. Rev. 181, 275 (1969).ADSCrossRefGoogle Scholar
  71. 71.
    T. Pohl, D. Vrinceanu, and H. R. Sadeghpour, Phys. Rev. Lett. 100, 223201 (2008).ADSCrossRefGoogle Scholar
  72. 72.
    J.-F. Delpech, J. Boulmer, and F. Devos, J. Phys. (France) 40, 215 (1979).CrossRefGoogle Scholar
  73. 73.
    J.-F. Delpech, J. Boulmer, and F. Devos, Phys. Rev. Lett. 39, 1400 (1977).ADSCrossRefGoogle Scholar
  74. 74.
    B. V. Zelener, G. E. Norman, and V. S. Filinov, Perturbation Theory and Pseudopotential in Statistical Thermodynamics (Nauka, Moscow, 1981).Google Scholar
  75. 75.
    V. M. Zamalin, G. E. Norman, and V. S. Filinov, The Monte Carlo Method in Statistical Thermodynamics (Nauka, Moscow, 1977).Google Scholar
  76. 76.
    V. S. Filinov, V. E. Fortov, and M. Bonits, Pis’ma Zh. Eksp. Teor. Fiz. 72, 361 (2000) [JETP Lett. 72, 245 (2000)].Google Scholar
  77. 77.
    S. Filinov, V. E. Fortov, M. Bonitz, and D. Kremp, Phys. Lett. 274, 228 (2000).CrossRefGoogle Scholar
  78. 78.
    V. S. Filinov, M. Bonitz, W. Ebeling, and V. E. Fortov, Plasma Phys. Control. Fusion 43, 743 (2001).ADSCrossRefGoogle Scholar
  79. 79.
    V. S. Filinov, V. E. Fortov, M. Bonits, and P. R. Levashov, Pis’ma Zh. Eksp. Teor. Fiz. 74, 422 (2001) [JETP Lett. 74, 384 (2001)].Google Scholar
  80. 80.
    V. S. Filinov, W. M. Bonitz, P. Levashov, et al., J. Phys. A.: Math. Gen. 36, 6069 (2003).ADSCrossRefMATHGoogle Scholar
  81. 81.
    B. V. Zelener, G. E. Norman, and V. S. Filinov, Teplofiz. Vys. Temp. 10, 1160 (1972).Google Scholar
  82. 82.
    B. V. Zelener, G. E. Norman, and V. S. Filinov, Teplofiz. Vys. Temp. 13, 712 (1975).ADSGoogle Scholar
  83. 83.
    B. V. Zelener, G. E. Norman, and V. S. Filinov, Teplofiz. Vys. Temp. 13, 913 (1975).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • E. A. Manykin
    • 1
    • 3
  • B. B. Zelener
    • 2
    • 3
  • B. V. Zelener
    • 2
  1. 1.Russian Research Centre Kurchatov InstituteMoscowRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  3. 3.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations