JETP Letters

, Volume 92, Issue 8, pp 537–542 | Cite as

Penetration of hot electrons through a cold disordered wire

  • A. S. Ioselevich
  • D. I. Pikulin
Condensed Matter

Abstract

We study a penetration of an electron with high energy ET through strongly disordered wire of length La (a being the localization length). Such an electron can loose, but not gain the energy, when hopping from one localized state to another. We have found a distribution function for the transmission coefficient 풯. The typical 풯 remains exponentially small in L/a, but with the decrement, reduced compared to the case of direct elastic tunneling: \( \overline {\ln T} \) ≈ 0.237 × 2L/a. The distribution function has a strong tail in the domain of anomalously high 풯; the average \( \overline T \) ∝ (a/L)2 is controlled by rare configurations of disorder, corresponding to this tail.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Anderson, Phys. Rev. 109, 1492 (1958).CrossRefADSGoogle Scholar
  2. 2.
    I. M. Lifshits, S. Gredescul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988).Google Scholar
  3. 3.
    V. L. Berezinskii, J. Exp. Theor. Phys. 65, 1251 (1973).Google Scholar
  4. 4.
    P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. Rev. B 22, 3519 (1980); P. W. Anderson, Phys. Rev. B 23, 4828 (1981).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).Google Scholar
  6. 6.
    J. Kurkijärvi, Phys. Rev. B 8, 922 (1973).CrossRefADSGoogle Scholar
  7. 7.
    M. E. Raĭkh and I. M. Ruzin, J. Exp. Theor. Phys. 68, 642 (1989).Google Scholar
  8. 8.
    N. F. Mott, J. Non-Cryst. Solids 1, 1 (1968); V. Ambegaokar, B. J. Halperin, and J. S. Langer, Phys. Rev. B 4, 2612 (1971).CrossRefADSGoogle Scholar
  9. 9.
    T. Nattermann, T. Giamarchi, and P. Le Doussal, Phys. Rev. Lett. 91, 056603 (2003).CrossRefADSGoogle Scholar
  10. 10.
    M. M. Fogler and R. S. Kelley, Phys. Rev. Lett. 95, 166604 (2005).CrossRefADSGoogle Scholar
  11. 11.
    A. S. Rodin and M. M. Fogler, Phys. Rev. B 80, 155435 (2009).CrossRefADSGoogle Scholar
  12. 12.
    Nguyen Van Lien and B. I. Shklovskii, Solid State Commun. 38, 99 (1981).CrossRefGoogle Scholar
  13. 13.
    A. S. Ioselevich and D. I. Pikulin, to be published.Google Scholar
  14. 14.
    S. M. Ulam, in Modern Mathematics for the Engineers, Ed. by E. F. Beckenbach (McGraw-Hill, New York, 1961), p. 261; J. Baik, P. Deift, and K. Johansson, J. Am. Math. Soc. 12, 1119 (1999).Google Scholar
  15. 15.
    B. I. Shklovskii, H. Fritzsche, and S. D. Baranovskii, Phys. Rev. Lett. 62, 2989 (1989).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. S. Ioselevich
    • 1
    • 2
  • D. I. Pikulin
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations