JETP Letters

, Volume 92, Issue 8, pp 516–520 | Cite as

Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses

  • S. I. Ashitkov
  • M. B. Agranat
  • G. I. Kanel’
  • P. S. Komarov
  • V. E. Fortov
Condensed Matter

Abstract

The dynamics of the motion of the free surface of micron and submicron films under the action of a compression pulse excited in the process of femtosecond laser heating of the surface layer of a target has been investigated by femtosecond interferometric microscopy. The relation between the velocity of the shock wave and the particle velocity behind its front indicates the shock compression to 9–13 GPa is elastic in this duration range. This is also confirmed by the small (≤1 ps) time of an increase in the parameters in the shock wave. Shear stresses reached in this process are close to their estimated ultimate values for aluminum. The spall strength determined at a strain rate of 109 s−1 and a spall thickness of 250–300 nm is larger than half the ultimate strength of aluminum.

Keywords

Shock Wave JETP Letter Femtosecond Laser Pulse Shock Compression Probe Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. I. Kanel, V. E. Fortov, and S. V. Razorenov, Usp. Fiz. Nauk 177, 809 (2007) [Phys. Usp. 50, 771 (2007)].CrossRefGoogle Scholar
  2. 2.
    G. V. Sin’ko and N. A. Smirnov, JETP Lett. 75, 184 (2002).CrossRefADSGoogle Scholar
  3. 3.
    M. Jahnátek, J. Hafner, and M. Krají, Phys. Rev. B 79, 224103 (2009).CrossRefADSGoogle Scholar
  4. 4.
    D. M. Clatterbuck, C. R. Krenn, M. L. Cohen, et al., Phys. Rev. Lett. 91, 135501 (2003).CrossRefADSGoogle Scholar
  5. 5.
    G. Kimminau, P. Erhart, E. M. Bringa, et al., Phys. Rev. B 81, 092102 (2010).CrossRefADSGoogle Scholar
  6. 6.
    G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].Google Scholar
  7. 7.
    G. I. Kanel, Int. J. Fract. 163, 173 (2010).MATHCrossRefGoogle Scholar
  8. 8.
    S. Eliezer, E. Moshe, and D. Eliezer, Laser Part. Beams 20, 87 (2002).CrossRefADSGoogle Scholar
  9. 9.
    P. M. Celliers, D. K. Bradley, G. W. Collins, et al., Rev. Sci. Instrum. 75, 4916 (2004).CrossRefADSGoogle Scholar
  10. 10.
    D. C. Swift, T. E. Tierney IV, R. A. Kopp, et al., Phys. Rev. E 69, 036406–8 (2004).CrossRefADSGoogle Scholar
  11. 11.
    V. E. Fortov, D. Batani, A. V. Kilpio, et al., Laser Part. Beams 20, 317 (2002).CrossRefADSGoogle Scholar
  12. 12.
    D. S. Moore, K. T. Gahagan, J. H. Reho, et al., Appl. Phys. Lett. 78, 40 (2001).CrossRefADSGoogle Scholar
  13. 13.
    S. I. Anisimov, N. A. Inogamov, Yu. V. Petrov, et al., Appl. Phys. A 92, 939 (2008).CrossRefADSGoogle Scholar
  14. 14.
    K. Baumung, H. J. Bluhm, B. Goel, et al., Laser Part. Beams 14, 181 (1996).CrossRefADSGoogle Scholar
  15. 15.
    D. D. Bloomquist and S. A. Sheffield, J. Appl. Phys. 54, 1717 (1983).CrossRefADSGoogle Scholar
  16. 16.
    V. V. Temnov, K. Sokolovski-Tinten, P. Zhou, et al., J. Opt. Soc. Am. B 23, 1954 (2006).CrossRefADSGoogle Scholar
  17. 17.
    M. B. Agranat, N. E. Andreev S. I. Ashitkov, et al., Pis’ma Zh. Eksp. Teor. Fiz. 85, 328 (2007) [JETP Lett. 85, 271 (2007)].Google Scholar
  18. 18.
    M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, et al., Pis’ma Zh. Eksp. Teor. Fiz. 91, 517 (2010) [JETP Lett. 91, 471 (2010)].Google Scholar
  19. 19.
    K. T. Gahagan, D. S. Moore, D. J. Funk, et al., Phys. Rev. Lett. 85, 3205 (2000).CrossRefADSGoogle Scholar
  20. 20.
    Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vols. 1 and 2 (2nd ed., Nauka, Moscow, 1966; Academic, New York, 1966, 1967).Google Scholar
  21. 21.
    Y. M. Gupta, J. M. Winey, P. B. Trivedi, et al., J. Appl. Phys. 105, 036107 (2009).CrossRefADSGoogle Scholar
  22. 22.
    J. M. Winey, B. M. LaLone, P. B. Trivedi, et al., J. Appl. Phys. 106, 073508 (2009).CrossRefADSGoogle Scholar
  23. 23.
    G. V. Garkushin, G. I. Kanel, and S. V. Razorenov, Fiz. Tverd. Tela 52, 2216 (2010) [Phys. Solid State 52, 2369 (2010)].Google Scholar
  24. 24.
    G. V. Stepanov, Probl. Prochnosti 8, 66 (1976).Google Scholar
  25. 25.
    P. A. Zhilyaev, A. Yu. Kuksin, V. V. Stegailov, et al., Fiz. Tverd. Tela 52, 1508 (2010) [Phys. Solid State 52, 1619 (2010)].Google Scholar
  26. 26.
    V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, et al., Appl. Surf. Sci. 255, 9592 (2009).CrossRefADSGoogle Scholar
  27. 27.
    G. I. Kanel, S. V. Razorenov, A. A. Bogatch, et al., J. Appl. Phys. 79, 8310 (1996).CrossRefADSGoogle Scholar
  28. 28.
    S. V. Razorenov, G. I. Kanel, and V. E. Fortov, Fiz. Met. Metalloved. 95, 91 (2003).Google Scholar
  29. 29.
    G. I. Kanel, S. V. Razorenov, K. Baumung, et al., J. Appl. Phys. 90, 136 (2001).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. I. Ashitkov
    • 1
  • M. B. Agranat
    • 1
  • G. I. Kanel’
    • 1
  • P. S. Komarov
    • 1
  • V. E. Fortov
    • 1
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations