JETP Letters

, Volume 92, Issue 7, pp 479–483 | Cite as

Pressure-induced change in the relaxation dynamics of glycerol

  • A. A. Pronin
  • M. V. Kondrin
  • A. G. Lyapin
  • V. V. Brazhkin
  • A. A. Volkov
  • P. Lunkenheimer
  • A. Loidl
Article

Abstract

Glycerol is one of the best studied and most widely used glass-forming liquids; however, its dynamic properties are still under discussion. The dielectric spectra of glycerol are studied in detail over wide ranges of temperatures and pressures up to 4.5 GPa. Starting from the pressures of 2–3 GPa, qualitative change in the dynamics of structural relaxation processes in glycerol has been revealed. It is accompanied by the appearance of secondary relaxation and a change in the asymptotic behavior of the pressure dependence of the fragility. The relation between the parameters for different relaxation mechanisms is analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Debye, Polar Molecules (Dover, New York, 1929).MATHGoogle Scholar
  2. 2.
    J. Frenkel, Kinetic Theory of Liquids (Oxford Univ., London, 1946).MATHGoogle Scholar
  3. 3.
    H. Vogel, Z. Phys. 22, 645 (1921); G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925); G. Tamman and W. Hesse, Z. Anorg. Allg. Chem. 156, 245 (1926).Google Scholar
  4. 4.
    K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).CrossRefADSGoogle Scholar
  5. 5.
    D. W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484 (1951).CrossRefADSGoogle Scholar
  6. 6.
    A. Schonhals, F. Kremer, A. Hofmann, et al., Phys. Rev. Lett. 70, 3459 (1993).CrossRefADSGoogle Scholar
  7. 7.
    U. Schneider, P. Lunkenheimer, R. Brand, et al., J. Non-Cryst. Solids 235, 173 (1998).CrossRefADSGoogle Scholar
  8. 8.
    P. Lunkenheimer and A. Loidl, Chem. Phys. 284, 205 (2002).CrossRefADSGoogle Scholar
  9. 9.
    G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970).CrossRefADSGoogle Scholar
  10. 10.
    K. L. Ngai and S. Capaccioli, J. Phys.: Condens. Matter 20, 244101 (2008).CrossRefADSGoogle Scholar
  11. 11.
    K. Ngai, R. Casalini, S. Capaccioli, et al., Adv. Chem. Phys. 133, 497 (2006).Google Scholar
  12. 12.
    K. L. Ngai and M. Paluch, J. Chem. Phys. 120, 857 (2004).CrossRefADSGoogle Scholar
  13. 13.
    U. Schneider, R. Brand, P. Lunkenheimer, et al., Phys. Rev. Lett. 84, 5560 (2000).CrossRefADSGoogle Scholar
  14. 14.
    P. Lunkenheimer, R. Wehn, U. Schneider, et al., Phys. Rev. Lett. 95, 055702 (2005).CrossRefADSGoogle Scholar
  15. 15.
    K. L. Ngai, P. Lunkenheimer, C. Leon, et al., J. Chem. Phys. 115, 1405 (2001).CrossRefADSGoogle Scholar
  16. 16.
    A. Reiser, G. Kasper, and S. Hunklinger, Phys. Rev. B 72, 094204 (2005).CrossRefADSGoogle Scholar
  17. 17.
    M. Paluch, R. Casalini, S. Hensel-Bielowka, et al., J. Chem. Phys. 116, 9839 (2002).CrossRefADSGoogle Scholar
  18. 18.
    S. Hensel-Bielowka, S. Pawlus, C. M. Roland, et al., Phys. Rev. E 69, 050501 (2004).CrossRefADSGoogle Scholar
  19. 19.
    H. Forsman, P. Andersson, and G. Backstrom, J. Chem. Soc. Faraday Trans. 82, 557 (1986).Google Scholar
  20. 20.
    G. P. Johari and E. Whalley, Faraday Symp. Chem. Soc. 6, 23 (1972).CrossRefGoogle Scholar
  21. 21.
    A. Dos, M. Paluch, H. Sillescu, et al., Phys. Rev. Lett. 88, 095701 (2002).CrossRefADSGoogle Scholar
  22. 22.
    C. M. Roland, S. Hensel-Bielowka, M. Paluch, et al., Rep. Prog. Phys. 68, 1405 (2005).CrossRefADSGoogle Scholar
  23. 23.
    R. Casalini and C. M. Roland, Phys. Rev. Lett. 91, 015702 (2003).CrossRefADSGoogle Scholar
  24. 24.
    M. Paluch, C. M. Roland, S. Pawlus, et al., Phys. Rev. Lett. 91, 115701 (2003).CrossRefADSGoogle Scholar
  25. 25.
    S. Hensel-Bielowka, M. Paluch, and K. L. Ngai, J. Chem. Phys. 123, 014502 (2005).CrossRefADSGoogle Scholar
  26. 26.
    Kyaw Zin Win and Narayanan Menon, Phys. Rev. E 73, 040501 (2006).CrossRefADSGoogle Scholar
  27. 27.
    Th. Voigtmann and W. C. K. Poon, J. Phys.: Condens. Matter 18, 465 (2006).CrossRefADSGoogle Scholar
  28. 28.
    Th. Voigtmann, Phys. Rev. Lett. 101, 095701 (2008).CrossRefADSGoogle Scholar
  29. 29.
    A. A. Pronin, M. V. Kondrin, A. G. Lyapin, et al., Phys. Rev. E 81, 041503 (2010).CrossRefADSGoogle Scholar
  30. 30.
    L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Press. Res. 24, 371 (2004).CrossRefGoogle Scholar
  31. 31.
    A. Reiser and G. Kasper, Europhys. Lett. 76, 1137 (2006).CrossRefADSGoogle Scholar
  32. 32.
    P. G. Debenedetti and F. H. Stillinger, Nature 410, 259 (2001).CrossRefADSGoogle Scholar
  33. 33.
    C. A. Herbst, R. L. Cook, and H. E. King, Nature 361, 518 (1993).CrossRefADSGoogle Scholar
  34. 34.
    S. Pawlus, M. Paluch, J. Ziolo, et al., J. Phys.: Condens. Matter 21, 332101 (2009).CrossRefGoogle Scholar
  35. 35.
    L. J. Root and B. J. Berne, J. Chem. Phys. 107, 4350 (1997).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. A. Pronin
    • 1
  • M. V. Kondrin
    • 2
  • A. G. Lyapin
    • 2
  • V. V. Brazhkin
    • 2
  • A. A. Volkov
    • 1
  • P. Lunkenheimer
    • 3
  • A. Loidl
    • 3
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute for High-Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow regionRussia
  3. 3.Experimental Physics VUniversity of AugsburgAugsburgGermany

Personalised recommendations