Advertisement

JETP Letters

, Volume 92, Issue 6, pp 396–400 | Cite as

Grain boundary layers in nanocrystalline ferromagnetic zinc oxide

  • B. B. Straumal
  • A. A. Myatiev
  • P. B. Straumal
  • A. A. Mazilkin
  • S. G. Protasova
  • E. Goering
  • B. Baretzky
Article

Abstract

The complete solubility of an impurity in a polycrystal increases with decreasing grain size, because the impurity dissolves not only in the crystallite bulk but also on the grain boundaries. This effect is especially strong when the adsorption layers (or the grain boundary phases) are multilayer. For example, the Mn solubility in the nanocrystalline films (where the size of grains is ∼20 nm) is more than three times greater than that in the ZnO single crystals. The thin nanocrystalline Mn-doped ZnO films in the Mn concentration range 0.1–47 at % have been obtained from organic precursors (butanoates) by the “liquid ceramic” method. They have ferromagnetic properties, because the specific area of the grain boundaries in them is greater than the critical value [B.B. Straumal et al., Phys. Rev. B 79, 205206 (2009)]. The high-resolution electron transmission microscopy studies show that the ZnO nanocrystalline grains with the wurtzite lattice are separated by amorphous layers whose thickness increases with the Mn concentration. The morphology of these layers differs greatly from the structure of the amorphous prewetting films on the grain boundaries in the ZnO:Bi2O3 system.

Keywords

JETP Letter High Resolution Transmission Electron Microscopy Amorphous Layer High Resolution Transmission Electron Micrographs Quasi Liquid Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Dietl, H. Ohno, F. Matsukura, et al., Science 287, 1019 (2000).CrossRefADSGoogle Scholar
  2. 2.
    B. B. Straumal, A. A. Mazilkin, S. G. Protasova, et al., Phys. Rev. B 79, 205206 (2009).CrossRefADSGoogle Scholar
  3. 3.
    S. K. Mandal, A. K. Das, T. K. Nath, et al., J. Appl. Phys. 100, 104315 (2006).CrossRefADSGoogle Scholar
  4. 4.
    S. Venkataraj, N. Ohashi, I. Sakaguchi, et al., J. Appl. Phys. 102, 014905 (2007).CrossRefADSGoogle Scholar
  5. 5.
    J. Alaria, P. Turek, M. Bernard, et al., Chem. Phys. Lett. 415, 337 (2005).CrossRefADSGoogle Scholar
  6. 6.
    S. Kolesnik and B. Dabrowski, J. Appl. Phys. 96, 5379 (2004).CrossRefADSGoogle Scholar
  7. 7.
    M. H. Kane, W. E. Fenwick, M. Strassburg, et al., Phys. Status Solidi B 244, 1462 (2007).CrossRefADSGoogle Scholar
  8. 8.
    A. I. Savchuk, P. N. Gorley, V. V. Khomyak, et al., Mater. Sci. Eng. B 109, 196 (2004).CrossRefGoogle Scholar
  9. 9.
    G. Lawes, A. S. Risbud, A. P. Ramirez, et al., Phys. Rev. B 71, 045201 (2005).CrossRefADSGoogle Scholar
  10. 10.
    O. D. Jayakumar, H. G. Salunke, R. M. Kadam, et al., Nanotechnology 17, 1278 (2006).CrossRefADSGoogle Scholar
  11. 11.
    M. Pal, Jpn. J. Appl. Phys. 44, 7901 (2005).CrossRefADSGoogle Scholar
  12. 12.
    B. Babič-Stojič, D. Milivojevič, J. Blanusa, et al., J. Phys.: Condens. Matter 20, 235217 (2008).CrossRefADSGoogle Scholar
  13. 13.
    Z. Yan, Y. Ma, D. Wang, et al., Appl. Phys. Lett. 92, 081911 (2008).CrossRefADSGoogle Scholar
  14. 14.
    M. Diaconu, H. Schmidt, H. Hochmuth, et al., J. Magn. Magn. Mater. 307, 212 (2006).CrossRefADSGoogle Scholar
  15. 15.
    M. Diaconu, H. Schmidt, H. Hochmuth, et al., Thin Solid Films 486, 117 (2005).CrossRefADSGoogle Scholar
  16. 16.
    Q. Xu, H. Schmidt, S. Zhou, et al., Appl. Phys. Lett. 92, 082508 (2008).CrossRefADSGoogle Scholar
  17. 17.
    N. Gopalakrishnan, J. Elanchezhiyan, K. P. Bhuvana, et al., Scr. Mater. 58, 930 (2008).CrossRefGoogle Scholar
  18. 18.
    B. B. Straumal, S. G. Protasova, A. A. Mazilkin, et al., J. Appl. Phys. 108, 073923 (2010).CrossRefADSGoogle Scholar
  19. 19.
    H. Wang and Y.-M. Chiang, J. Am. Ceram. Soc. 81, 89 (1998).CrossRefGoogle Scholar
  20. 20.
    J. P. Gambino, W. D. Kingery, G. E. Pike, et al., J. Am. Ceram. Soc. 72, 642 (1989).CrossRefGoogle Scholar
  21. 21.
    E. Olsson and G. L. Dunlop, J. Appl. Phys. 66, 3666 (1989).CrossRefADSGoogle Scholar
  22. 22.
    B. B. Straumal, A. A. Mazilkin, P. B. Straumal, et al., Int. J. Nanomanufact. 2, 253 (2008).CrossRefGoogle Scholar
  23. 23.
    J. Luo and Y.-M. Chiang, Ann. Rev. Mater. Res. 38, 227 (2008).CrossRefADSGoogle Scholar
  24. 24.
    H. Qian, J. Luo, and Y.-M. Chiang, Acta Mater. 56, 862 (2008).CrossRefGoogle Scholar
  25. 25.
    B. B. Straumal, A. A. Mazilkin, S. G. Protasova, et al., Acta Mater. 56, 6246 (2008).CrossRefGoogle Scholar
  26. 26.
    L. Lábár, Microsc. Microanal. 14, 287 (2008).CrossRefGoogle Scholar
  27. 27.
    B. B. Straumal, B. Baretzky, A. A. Mazilkin, et al., J. Eur. Ceram. Soc. 29, 1963 (2009).CrossRefGoogle Scholar
  28. 28.
    B. B. Straumal, Grain Boundary Phase Transitions (Nauka, Moscow, 2003) [in Russian].Google Scholar
  29. 29.
    K. Masuko, A. Ashida, T. Yoshimura, et al., J. Magn. Magn. Mater. 310, E711 (2007).CrossRefADSGoogle Scholar
  30. 30.
    A. C. Mofor, A. El-Shaer, A. Bakin, et al., Superlatt. Microstruc. 39, 381 (2006).CrossRefADSGoogle Scholar
  31. 31.
    L. R. Reddy, P. Prathap, Y. P. V. Subbaiah, et al., Solid State Sci. 9, 718 (2007).CrossRefADSGoogle Scholar
  32. 32.
    M. Yuan, W. Fu, H. Yang, et al., Mater. Lett. 63, 1574 (2009).CrossRefGoogle Scholar
  33. 33.
    H. Saal, M. Binnewies, M. Schrader, et al., Chem. Eur. J. 15, 6408 (2009).CrossRefGoogle Scholar
  34. 34.
    D. McLean, Grain Boundaries in Metals (Clarendon, Oxford, 1957).Google Scholar
  35. 35.
    D. R. Clarke, J. Am. Ceram. Soc. 70, 15 (1987).CrossRefGoogle Scholar
  36. 36.
    M. Bobeth, D. R. Clarke, and W. Pompe, J. Am. Ceram. Soc. 82, 1537 (1999).CrossRefGoogle Scholar
  37. 37.
    A. Avishai, C. Scheu, and W. D. Kaplan, Acta Mater. 53, 1559 (2005).CrossRefGoogle Scholar
  38. 38.
    M. Baram and W. D. Kaplan, J. Mater. Sci. 41, 7775 (2006).CrossRefADSGoogle Scholar
  39. 39.
    J. W. Cahn, J. Chem. Phys. 66, 3667 (1977).CrossRefADSGoogle Scholar
  40. 40.
    N. Eustathopoulos, Int. Met. Rev. 28, 189 (1983).Google Scholar
  41. 41.
    B. Straumal, T. Muschik, W. Gust, et al., Acta Metall. Mater. 40, 939 (1992).CrossRefGoogle Scholar
  42. 42.
    B. Straumal, D. Molodov, and W. Gust, J. Phase Equilibria 15, 386 (1994).CrossRefGoogle Scholar
  43. 43.
    S. V. Divinski, M. Lohmann, Chr. Herzig, et al., Phys. Rev. B 71, 104104 (2005).CrossRefADSGoogle Scholar
  44. 44.
    B. B. Straumal, A. A. Mazilkin, O. A. Kogtenkova, et al., Phil. Mag. Lett. 87, 423 (2007).CrossRefADSGoogle Scholar
  45. 45.
    B. Straumal, R. Valiev, O. Kogtenkova, et al., Acta Mater 56, 6123 (2008).CrossRefGoogle Scholar
  46. 46.
    B. Straumal, E. Rabkin, W. Lojkowski, et al., Acta mater 45, 1931 (1997).CrossRefGoogle Scholar
  47. 47.
    J. Luo, V. K. Gupta, D. H. Yoon, et al., Appl. Phys. Lett. 87, 231902 (2005).CrossRefADSGoogle Scholar
  48. 48.
    B. B. Straumal, B. S. Bokstein, A. B. Straumal, et al., Pis’ma Zh. Eksp. Teor. Fiz. 88, 615 (2008) [JETP Lett. 88, 537 (2008)].Google Scholar
  49. 49.
    V. V. Belousov, JETP Lett. 88, 297 (2008).CrossRefADSGoogle Scholar
  50. 50.
    G. A. López, E. J. Mittemeijer, and B. B. Straumal, Acta Mater. 52, 4537 (2004).CrossRefGoogle Scholar
  51. 51.
    B. B. Straumal, B. Baretzky, O. A. Kogtenkova, et al., J. Mater. Sci. 45, 2057 (2010).CrossRefADSGoogle Scholar
  52. 52.
    B. B. Straumal, O. A. Kogtenkova, A. B. Straumal, et al., J. Mater. Sci. 45, 4271 (2010).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • B. B. Straumal
    • 1
    • 2
    • 4
  • A. A. Myatiev
    • 2
  • P. B. Straumal
    • 2
    • 3
  • A. A. Mazilkin
    • 1
    • 4
  • S. G. Protasova
    • 1
    • 4
  • E. Goering
    • 4
  • B. Baretzky
    • 5
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.National University of Science and Technology MISISMoscowRussia
  3. 3.Institut für MaterialphysikUniversität MünsterMünsterGermany
  4. 4.Max-Planck-Institut für MetallforschungStuttgartGermany
  5. 5.Institut für NanotechnologieKarlsruher Institut für TechnologieEggenstein-LeopoldshafenGermany

Personalised recommendations