JETP Letters

, Volume 92, Issue 4, pp 257–267 | Cite as

Two-dimensional gravity in genus one in matrix models, topological and liouville approaches

Scientific Summaries

Abstract

One-matrix model in p-critical point on torus is considered. The generating function of correlation numbers in genus one is evaluated and used for computation correlation numbers in KdV and CFT frames. It is shown that the correlation numbers in KdV frame in genus one satisfy the Witten topological gravity recurrence relations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Polyakov, Phys. Lett. B 103, 207 (1981).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    P. H. Ginsparg and G. W. Moore, arXiv:9304011 [hep-th]; P. Di Francesco, P. H. Ginsparg, and J. Zinn-Justin, Phys. Rep. 254, 1 (1995); arXiv:9306153 [hep-th].Google Scholar
  3. 3.
    V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, Mod. Phys. Lett. A 3, 819 (1988).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    V. A. Kazakov, Phys. Lett. A 119, 140 (1986); V. Kazakov, Mod. Phys. Lett. A 4, 2125 (1989); M. Staudacher, Nucl. Phys. B 336, 349 (1990).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    G. W. Moore, N. Seiberg, and M. Staudacher, Nucl. Phys. B 362, 665 (1991).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    A. A. Belavin and A. B. Zamolodchikov, J. Phys. A 42, 304004 (2009); arXiv:0811.0450 [hep-th].MathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Tarnopolsky, arXiv:0912.4971.Google Scholar
  8. 8.
    E. Witten, Nucl. Phys. B 340, 281 (1990).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    C. Itzykson and J. B. Zuber, Int. J. Mod. Phys. A 7, 5661 (1992); arXiv:9201001 [hep-th].MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    A. B. Zamolodchikov (unpublished).Google Scholar
  11. 11.
    G. M. Fihtengolts, Course of Differential and Integral Calculus (Fizmatlit, Moscow, 2006), Vol. 2 (in Russian).Google Scholar
  12. 12.
    E. Witten, IASSNS-HEP-91-24 (1991).Google Scholar
  13. 13.
    M. Kontsevich, Comm. Math. Phys. 147, 1 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    A. Belavin and Al. Zamolodchikov, Theor. Math. Phys. 147, 729 (2006); arXiv:0510214 [hep-th].MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    A. Belavin and C. Rim, Phys. Lett. B 687, 264 (2010); arXiv:1001.4356[hep-th].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of General and Applied PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyi, Moscow regionRussia

Personalised recommendations