JETP Letters

, Volume 92, Issue 3, pp 189–192 | Cite as

On teleportation in a system of identical particles

  • S. P. Kulik
  • S. N. Molotkov
  • S. S. Straupe
Quantum Information Science


The teleportation of an unknown polarization state of one of the photons in a system of identical particles has been considered. It has been shown that the spatial degrees of freedom, which are various directions of the momentum of three photons, are of significant importance for teleportation in the system of identical particles. The inclusion of the spatial degrees of freedom increases the dimension of the space of single-particle states. In view of this increase, a four-dimensional subspace of two-particle states, which is similar to the space of states spanned on the Bell states in the system of two distinguishable qubits, can be separated in the experimental configuration.


Entangle State Bell State Identical Particle Polariza Tion Degree Distinguishable Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. K. Wotters and W. H. Zurek, Nature 299, 802 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    C. H. Bennett, G. Brassard, C. Crepeau, et al., Phys. Rev. Lett. 70, 1895 (1993).MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    D. Bouwmeester, J-W. Pan, K. Mattle, et al., Nature (London) 390, 575 (1997); D. Boschi, S. Branca, F. De Martini, et al., Phys. Rev. Lett. 80, 1121 (1998); A. Furusawa, J. L. Sorensen, S. L. Braunstein, et al., Science 282, 706 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    Y.-H. Kim, S. P. Kulik, and Y. Shih, Phys. Rev. Lett. 86, 1370 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer, The Netherlands, 1995).zbMATHGoogle Scholar
  7. 7.
    F. A. Berezin, Method of Second Quantization (2nd ed., Nauka, Moscow, 1986; Academic, New York, 1966).zbMATHGoogle Scholar
  8. 8.
    S. N. Molotkov, Pis’ma Zh. Eksp. Teor. Fiz. 68, 248 (1998) [JETP Lett. 68, 263 (1998)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. P. Kulik
    • 1
  • S. N. Molotkov
    • 2
    • 3
    • 4
  • S. S. Straupe
    • 1
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  3. 3.Academy of Cryptography of the Russian FederationMoscowRussia
  4. 4.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations