Advertisement

JETP Letters

, Volume 92, Issue 3, pp 140–145 | Cite as

Nonlinear interfacial waves in a constant-vorticity planar flow over variable depth

  • V. P. Ruban
Plasma, Gases
  • 43 Downloads

Abstract

Exact Lagrangian in compact form is derived for planar internal waves in a two-fluid system with a relatively small density jump (the Boussinesq limit taking place in real oceanic conditions), in the presence of a background shear current of constant vorticity, and over arbitrary bottom profile. Long-wave asymptotic approximations of higher orders are derived from the exact Hamiltonian functional in a remarkably simple way, for two different parametrizations of the interface shape.

Keywords

Internal Wave JETP Letter Interface Shape Dynamic Boundary Condition Kinematic Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Apel, J. R. Holbrook, A. K. Liu, and J. J. Tsai, J. Phys. Oceanogr. 15, 1625 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    A. K. Liu, J. R. Holbrook, and J. R. Apel, J. Phys. Oceanogr. 15, 1613 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    P. Brandt, A. Rubino, W. Alpers, and J. O. Backhaus, J. Phys. Oceanogr. 27, 648 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    V. D. Djordjevic and L. G. Redekopp, J. Phys. Oceanogr. 8, 1016 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    V. Vlasenko, P. Brandt, and A. Rubino, J. Phys. Oceanogr. 30, 2172 (2000).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    V. Vlasenko and K. Hutter, J. Phys. Oceanogr. 32, 1779 (2002).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    R. Grimshaw, E. Pelinovsky, T. Talipova, and A. Kurkin, J. Phys. Oceanogr. 34, 2774 (2004).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    V. Vlasenko and N. Stashchuk, J. Phys. Oceanogr. 36, 1959 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    T. B. Benjamin, J. Fluid Mech. 25, 241 (1966).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    T. B. Benjamin, J. Fluid Mech. 29, 559 (1967).ADSMATHCrossRefGoogle Scholar
  11. 11.
    H. Ono, J. Phys. Soc. Jpn. 39, 1082 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    R. J. Joseph, J. Phys. A 10, L225 (1977).ADSMATHCrossRefGoogle Scholar
  13. 13.
    G. Breyiannis, V. Bontozoglou, D. Valougeorgis, and A. Goulas, J. Fluid Mech. 249, 499 (1993).ADSMATHCrossRefGoogle Scholar
  14. 14.
    M. Stastna and K. G. Lamb, Phys. Fluids 14, 2987 (2002).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    W. Choi, Phys. Fluids 18, 036601 (2006).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    A. R. de Zarate and A. Nachbin, Commun. Math. Sci. 6, 385 (2008).MathSciNetMATHGoogle Scholar
  17. 17.
    A. R. de Zarate, D. G. A. Vigo, A. Nachbin, and W. Choi, Studies Appl. Math. 122, 275 (2009).MATHCrossRefGoogle Scholar
  18. 18.
    W. Choi and R. Camassa, J. Fluid Mech. 396, 1 (1999).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    L. A. Ostrovsky and J. Grue, Phys. Fluids 15, 2934 (2003).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    W. Craig, P. Guyenne, and H. Kalisch, Commun. Pure Appl. Math. 58, 1587 (2005).MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    R. Camassa, W. Choi, H. Michallet, et al., J. Fluid Mech. 549, 1 (2006).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    J. L. Bona, D. Lannes, and J.-C. Saut, J. Math. Pures Appl. 89, 538 (2008).MathSciNetMATHGoogle Scholar
  23. 23.
    W. Choi, R. Barros, and T. C. Jo, J. Fluid Mech. 629, 73 (2009).MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    S. Debsarma, K. P. Das, and J. T. Kirby, J. Fluid Mech. 654, 281 (2010); http://chinacat.coastal.udel.edu/kirby_pubs.html MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    E. Wahlen, Lett. Math. Phys. 79, 303 (2007).MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    E. Wahlen, Phys. Lett. A 372, 2597 (2008).MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    V. P. Ruban, JETP (2010, in press); arXiv:1004.3844Google Scholar
  28. 28.
    V. P. Ruban, Phys. Rev. E 70, 066302 (2004).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    V. P. Ruban, Phys. Rev. E 81, 056303 (2010).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    V. P. Ruban, Phys. Rev. E 77, 037302 (2008).MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    A. I. Dyachenko, E. A. Kuznetsov, M. D. Spector, and V. E. Zakharov, Phys. Lett. A 221, 73 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    A. I. Dyachenko, Y. V. Lvov, and V. E. Zakharov, Physica D 87, 233 (1995).MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    V. P. Ruban and J. Dreher, Phys. Rev. E 72, 066303 (2005).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations