JETP Letters

, Volume 92, Issue 3, pp 125–129 | Cite as

On the collisions between particles in the vicinity of rotating black holes

  • A. A. GribEmail author
  • Yu. V. Pavlov
Gravity, Astrophysics


Scattering of particles in the gravitational field of rotating black holes is considered. It is shown that scattering energy of particles in the centre of mass system can obtain very large values not only for extremal black holes but also for nonextremal ones. Extraction of energy after the collision is investigated. It is shown that due to the Penrose process the energy of the particle escaping the hole at infinity can be large. Contradictions in the problem of getting high energetic particles escaping the black hole are resolved.


Black Hole Angular Momentum Dark Matter JETP Letter Accretion Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Grib and Yu. V. Pavlov, Mod. Phys. Lett. A 23, 1151 (2008).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    The Pierre Auger Collab., Science 318, 938 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Grib and Yu. V. Pavlov, Grav. Cosmol. 15, 44 (2009).ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    R. Penrose, Riv. Nuovo Cimento Soc. Ital. Fis. 1, 252 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    K. Greisen, Phys. Rev. Lett. 16, 748 (1966).ADSCrossRefGoogle Scholar
  6. 6.
    G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966).ADSGoogle Scholar
  7. 7.
    T. Piran, J. Shaham, and J. Katz, Astrophys. J. Lett. 196, L107 (1975).ADSCrossRefGoogle Scholar
  8. 8.
    T. Piran and J. Shaham, Phys. Rev. D 16, 1615 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    M. Banados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    E. Berti, V. Cardoso, L. Gualtieri, et al., Phys. Rev. Lett. 103, 239001 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    T. Jacobson and T. P. Sotiriou, Phys. Rev. Lett. 104, 021101 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford Univ., Oxford, 1983).zbMATHGoogle Scholar
  13. 13.
    K. S. Thorne, Astrophys. J. 191, 507 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Theoretical Physics and Astronomy DepartmentThe Herzen UniversitySt. PetersburgRussia
  2. 2.Institute of Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations