Advertisement

JETP Letters

, Volume 92, Issue 2, pp 107–109 | Cite as

Statistical geometry of chaotic two-dimensional transport

  • I. V. Kolokolov
Article

Abstract

The joint distribution function of two distances between three Lagrangian particles has been calculated in the problem of chaotic two-dimensional transport.

Keywords

Lyapunov Exponent JETP Letter Inverse Fourier Transform Modify Bessel Function Statistical Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Mod. Phys. 73, 913 (2001).CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).Google Scholar
  3. 3.
    U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge Univ., Cambridge, 1995).zbMATHGoogle Scholar
  4. 4.
    A. Groisman and V. Steinberg, Nature 405, 53 (2000).CrossRefADSGoogle Scholar
  5. 5.
    G. K. Batchelor, J. Fluid. Mech. 5, 113 (1959).zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    H. Furstenberg, Trans. Amer. Math. Soc. 108, 377 (1963).zbMATHMathSciNetGoogle Scholar
  7. 7.
    B. Shraiman and E. Siggia, Phys. Rev. E 49, 2912 (1994).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. E 51, 5609 (1995).CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    D. Bernard, K. Gawedzki, and A. Kupiainen, J. Stat. Phys. 90, 519 (1998).zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    E. Balkovsky and A. Fouxon, Phys. Rev. E 60, 4164 (1999).CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    M. Chertkov, I. Kolokolov, and V. Lebedev, Phys. Fluids 19, 101703 (2007)CrossRefADSGoogle Scholar
  12. 12.
    S. A. Molchanov, A. A. Ruzmaıkin, and D. D. Sokolov, Usp. Fiz. Nauk 145, 593 (1985) [Sov. Phys. Usp. 28, 307 (1985)].ADSGoogle Scholar
  13. 13.
    M. Chertkov, G. Falkovich, I. Kolokolov, and M. Vergassola, Phys. Rev. Lett. 83, 4065 (1999).CrossRefADSGoogle Scholar
  14. 14.
    V. R. Kogan, I. V. Kolokolov, and V. V. Lebedev, J. Phys. A: Math. Theor. 43, 182001 (2010).CrossRefADSGoogle Scholar
  15. 15.
    E. Balkovsky, M. Chertkov, I. Kolokolov, and V. Lebedev, Pis’ma Zh. Éksp. Teor. Fiz. 61, 1012 (1995) [JETP Lett. 61, 1049 (1995)].Google Scholar
  16. 16.
    A. Celani and M. Vergassola, Phys. Rev. Lett. 86, 424 (2001).CrossRefADSGoogle Scholar
  17. 17.
    S. S. Vergeles, Zh. Eksp. Teor. Fiz. 129, 777 (2006) [J. Exp. Theor. Phys. 102, 685 (2006)].Google Scholar
  18. 18.
    M. Chertkov, G. Falkovich, and I. Kolokolov, Phys. Rev. Lett. 80, 2121 (1998).CrossRefADSGoogle Scholar
  19. 19.
    A. Gamba and I. Kolokolov, J. Stat. Phys. 94, 759 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    G. Bateman and A. Erdelyi, Higher Transcendental Functions 2 (McGraw-Hill, New York, 1953; Fizmatgiz, Moscow, 1965).Google Scholar
  21. 21.
    M. Chertkov, Y. Fedorov, and I. Kolokolov, J. Phys. A 27, 4925 (1994).zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations