JETP Letters

, Volume 92, Issue 1, pp 52–56 | Cite as

On the dependence of the lifetime of an atomic cluster on the intensity of its heat exchange with the environment

Condensed Matter

Abstract

The molecular dynamics and Monte Carlo studies of the thermal stability of C20, C36, and C60 fullerenes and the methane molecule are reported. It has been shown that the heat transfer between the atomic cluster and the external heat reservoir can either promote or prohibit the formation of defects in this cluster. The wide temperature and pressure ranges have been determined where the defect formation rate is essentially non-Arrhenius. It has been shown that the lifetime of light clusters in molecules depends more strongly on the contact with the heat reservoir. A statistical model that is based on the kinetic equation and allows for an analytical solution has been developed to explain the results. Within this model, the generalized Arrhenius formula has been derived to predict the lifetime of the clusters in an arbitrary thermal contact with the environment.

Keywords

Heat Transfer Fullerene JETP Letter Atomic Cluster Thermalization Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Hidaka, T. Nakamura, H. Tanaka, et al., Int. J. Chem. Kin. 22, 701 (1995).CrossRefGoogle Scholar
  2. 2.
    E. V. Stupochenko and M. N. Safaryan, Teor. Eksp. Khim. 2, 783 (1966).Google Scholar
  3. 3.
    X.-J. Han, Y. Wang, Z.-Z. Lin, et al., J. Chem. Phys. 132, 064103 (2010).CrossRefADSGoogle Scholar
  4. 4.
    M. J. López and J. Jellinek, Phys. Rev. A 50, 1445 (1994).CrossRefADSGoogle Scholar
  5. 5.
    O. K. Rice and H. C. Ramsperger, J. Am. Chem. Soc. 49, 1617 (1928).CrossRefGoogle Scholar
  6. 6.
    C. Hu and G. E. Scuseria, Phys. Rev. Lett. 72, 669 (1994).CrossRefADSGoogle Scholar
  7. 7.
    J. Jellenek and A. Goldberg, J. Chem. Phys. 113, 2570 (2000).CrossRefADSGoogle Scholar
  8. 8.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).Google Scholar
  9. 9.
    P. Attard, J. Chem. Phys. 116, 9616 (2002).CrossRefADSGoogle Scholar
  10. 10.
    H. A. Kramers, Physika 7, 284 (1940).MATHMathSciNetADSGoogle Scholar
  11. 11.
    A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).CrossRefADSGoogle Scholar
  12. 12.
    C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, J. Phys.: Cond. Matter 4, 6047 (1992).CrossRefADSGoogle Scholar
  13. 13.
    I. V. Davydov, A. I. Podlivaev, and L. A. Openov, Fiz. Tverd. Tela 47, 751 (2005) [Phys. Solid State 47, 778 (2005)].Google Scholar
  14. 14.
    A. I. Podlivaev and L. A. Openov, Fiz. Tverd. Tela 48, 2104 (2006) [Phys. Solid State 48, 2226 (2006)].Google Scholar
  15. 15.
    L. A. Openov and A. I. Podlivaev, Pis’ma Zh. Eksp. Teor. Fiz. 84, 217 (2006) [JETP Lett. 84, 185 (2006)].Google Scholar
  16. 16.
    L. A. Openov and A. I. Podlivaev, Pis’ma Zh. Eksp. Teor. Fiz. 84, 73 (2006) [JETP Lett. 84, 68 (2006)].Google Scholar
  17. 17.
    A. I. Podlivaev and L. A. Openov, Pis’ma Zh. Eksp. Teor. Fiz. 81, 656 (2005) [JETP Lett. 81, 533 (2005)].Google Scholar
  18. 18.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1651 (2009).CrossRefADSGoogle Scholar
  19. 19.
    M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Fiz. Tverd. Tela 51, 609 (2009) [Phys. Solid State 51, 645 (2009)].Google Scholar
  20. 20.
    V. F. Elesin, A. I. Podlivaev, and L. A. Openov, Phys. Low-Dim. Struct. 11, 91 (2000).Google Scholar
  21. 21.
    K. P. Katin and A. I. Podlivaev, Fiz. Tverd. Tela 52, 407 (2010) [Phys. Solid State 52, 436 (2010)].Google Scholar
  22. 22.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).MATHGoogle Scholar
  23. 23.
    L. N. Sidorov, M. A. Yurovskaya, A. Ya. Borshchevskii, et al., Fullerens (Ekzamen, Moscow, 2005) [in Russian].Google Scholar
  24. 24.
    A. I. Podlivaev and K. P. Katin, Nauchn.-Tekhn. Ved. SPGPU, Fiz.-Mat. Ser. 83, 24 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.National Nuclear Research University MEPhIMoscowRussia

Personalised recommendations