JETP Letters

, Volume 91, Issue 12, pp 670–674 | Cite as

Electronic structure of a Ba/n-AlGaN(0001) interface and the formation of a degenerate 2D electron gas

  • G. V. Benemanskaya
  • V. N. Zhmerik
  • M. N. Lapushkin
  • S. N. Timoshnev
Condensed Matter

Abstract

The electronic structure of ultrathin Ba/n-AlGaN(0001) interfaces has been investigated in situ in an ultra-high vacuum by the ultraviolet photoelectron spectroscopy method. The photoemission spectra from the n-AlGaN valence band and the spectra of the core levels Ga 3d, Al 2p, and Ba 4d have been studied under synchrotron excitation with photon energies of 60–400 eV. The modification of the spectra in the process of the formation of the Ba/n-AlGaN interface in the mode of the Ba submonolayer coverages has been revealed. It has been found that a decrease in the intensity in some spectral regions of the valence band is attributed to the interaction of the surface states of the AlGaN substrate with the Ba adatoms. It has been revealed that the interface formation results in the appearance of a new photoemission peak of the quasimetallic character at the Fermi level in the AlGaN bandgap. It has been established that the peak is due to the formation of the degenerate electron gas in the accumulation nanolayer induced by adsorption near the n-AlGaN surface.

Keywords

JETP Letter Valence Band Maximum High Electron Mobility Transistor Accumulation Layer Ultraviolet Photoelectron Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. Benemanskaya, V. S. Vikhnin, N. M. Shmidt, et al., Appl. Phys. Lett. 85, 1365 (2004).CrossRefADSGoogle Scholar
  2. 2.
    G. V. Benemanskaya, G. E. Frank-Kamenetskaya, and N. M. Shmidt, Zh. Eksp. Teor. Fiz. 130, 506 (2006) [JETP 103, 441 (2006)].Google Scholar
  3. 3.
    G. V. Benemanskaya, M. N. Lapushkin, and S. N. Timoshnev, Surf. Sci. 603, 2474 (2009).CrossRefADSGoogle Scholar
  4. 4.
    V. Aristov, G. Le Lay, V. M. Zhilin, et al., Phys. Rev. B 60, 7752 (1999).CrossRefADSGoogle Scholar
  5. 5.
    M. G. Betti, V. Corradini, G. Bertoni, et al., Phys. Rev. B 63, 155315 (2001).CrossRefADSGoogle Scholar
  6. 6.
    I. Mahboob, T. D. Veal, L. F. J. Piper, et al., Phys. Rev. B 69, 201307 (2004).CrossRefADSGoogle Scholar
  7. 7.
    O. Ambacher, J. Smart, J. R. Shealy, et al., J. Appl. Phys. 85, 3222 (1999).CrossRefADSGoogle Scholar
  8. 8.
    V. M. Bermudez, J. Appl. Phys. 80, 1190 (1996).CrossRefADSGoogle Scholar
  9. 9.
    C. I. Wu, A. Kahn, N. Taskar, et al., J. Appl. Phys. 83, 4249 (1998).CrossRefADSGoogle Scholar
  10. 10.
    S. S. Dhesi, C. B. Stagarescu, K. E. Smith, et al., Phys. Rev. B 56, 10271 (1997).CrossRefADSGoogle Scholar
  11. 11.
    T. Strasser, C. Solterbeck, F. Starrost, et al., Phys. Rev B 60, 11577 (1999).CrossRefADSGoogle Scholar
  12. 12.
    B. J. Kowalski, R. J. Iwanowski, J. Sadowski, et al., Surf. Sci. 548, 220 (2004).CrossRefADSGoogle Scholar
  13. 13.
    A. Rizzi, M. Kocan, J. Malindretos, et al., Appl. Phys. A 87, 505 (2007).CrossRefADSGoogle Scholar
  14. 14.
    T. Kozava, T. Mori, T. Owaki, et al., Jpn. J. Appl. Phys. 39, L772 (2000).CrossRefADSGoogle Scholar
  15. 15.
    M. C. Benjamin, M. D. Bremser, T. W. Weeks, et al., Appl. Surf. Sci. 104–105, 455 (1996).CrossRefGoogle Scholar
  16. 16.
    V. N. Jmerik, A. M. Mizerov, T. V. Shubina, et al., Fiz. Tekh. Poluprovodn. 42, 1452 (2008) [Semiconductors 42, 1420 (2008)].Google Scholar
  17. 17.
    T. Okuda, K.-S. An, A. Harasava, et al., Phys. Rev. B 71, 085317 (2005).CrossRefADSGoogle Scholar
  18. 18.
    T.-W. Pi, I.-H. Hong, and C.-P. Cheng, Phys. Rev. B 58, 4149 (1998).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • G. V. Benemanskaya
    • 1
  • V. N. Zhmerik
    • 1
  • M. N. Lapushkin
    • 1
  • S. N. Timoshnev
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations