Advertisement

JETP Letters

, Volume 91, Issue 9, pp 471–477 | Cite as

Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses

  • M. B. Agranat
  • S. I. Anisimov
  • S. I. Ashitkov
  • V. V. Zhakhovskii
  • N. A. Inogamov
  • P. S. Komarov
  • A. V. Ovchinnikov
  • V. E. Fortov
  • V. A. Khokhlov
  • V. V. Shepelev
Condensed Matter

Abstract

The dynamics of the melting of a surface nanolayer and the formation of thermal and shock waves in metals irradiated by femtosecond laser pulses has been investigated both experimentally and theoretically. A new experimental-computational method has been implemented to determine the parameters of laser-induced shock waves in metallic films. Data on the strength properties of the condensed phase in aluminum films at an extremely high strain rate (\( \dot V \)/V ∼ 109 s−1)under the action of a laser-induced shock wave have been obtained.

Keywords

Shock Wave Cavitation Molecular Dynamic Simulation JETP Letter Pump Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, J. Opt. Soc. Am. B 23, 1954 (2006).CrossRefADSGoogle Scholar
  2. 2.
    M. B. Agranat, N. E. Andreev, S. I. Ashitkov, et al., Pis’ma Zh. Eksp. Teor. Fiz. 85, 328 (2007) [JETP Lett. 85, 271 (2007)].Google Scholar
  3. 3.
    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, et al., Appl. Surf. Sci. 255, 9712 (2009); arXiv:0812.2965v1 [physics.optics].CrossRefADSGoogle Scholar
  4. 4.
    G. I. Kanel’, S. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, Berlin, 2004).Google Scholar
  5. 5.
    A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor Francis, 1993); http://teos.ficp.ac.ru/rusbank/.
  6. 6.
    G. I. Kanel’, V. E. Fortov, S. V. Razorenov, Usp. Fiz. Nauk 177, 809 (2007) [Phys. Usp. 50, 771 (2007)].CrossRefGoogle Scholar
  7. 7.
    M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am. 72, 156 (1982).CrossRefADSGoogle Scholar
  8. 8.
    D. S. Moore, K. T. Gahagan, J. H. Reho, et al., Appl. Phys. Lett. 78, 40 (2001).CrossRefADSGoogle Scholar
  9. 9.
    S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Zh. Eksp. Teor. Fiz. 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)].ADSGoogle Scholar
  10. 10.
    Zh. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B 77, 075133 (2008).CrossRefADSGoogle Scholar
  11. 11.
    N. A. Inogamov and Yu. V. Petrov, Zh. Eksp. Teor. Fiz. 137, 505 (2010).Google Scholar
  12. 12.
    V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, et al., Appl. Surf. Sci. 255, 9592 (2009).CrossRefADSGoogle Scholar
  13. 13.
    T. Antoun, L. Seaman, D. R. Curran, et al., Spall Fracture (Springer, 2003).Google Scholar
  14. 14.
    M. E. Povarnitsyn, P. R. Levashov, and K. V. Khishchenko, in Proceedings of the 33th International Conference on Matter State Equations, Physics of Extremal Matter State, Ed. by V. E. Fortov et al. (El’brus, 2008), p. 161.Google Scholar
  15. 15.
    M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, Appl. Surf. Sci. 255, 5120 (2009).CrossRefADSGoogle Scholar
  16. 16.
    D. J. Funk, D. S. Moore, S. D. McGrane, et al., Thin Solid Films 453–454, 542 (2004).CrossRefGoogle Scholar
  17. 17.
    P. A. Zhilyaev, A. Yu. Kuksin, V. V. Stegailov, and A. V. Yanilkin, Fiz. Tverd. Tela (2010, in press).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. B. Agranat
    • 1
  • S. I. Anisimov
    • 2
  • S. I. Ashitkov
    • 1
  • V. V. Zhakhovskii
    • 1
  • N. A. Inogamov
    • 2
  • P. S. Komarov
    • 1
  • A. V. Ovchinnikov
    • 1
  • V. E. Fortov
    • 1
  • V. A. Khokhlov
    • 2
  • V. V. Shepelev
    • 3
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  3. 3.Institute for Computer Aided DesignRussian Academy of SciencesMoscowRussia

Personalised recommendations