JETP Letters

, Volume 91, Issue 8, pp 428–434 | Cite as

Spectrum of Kelvin-wave turbulence in superfluids

  • V. S. L’vov
  • S. Nazarenko
Article

Abstract

We derive a type of kinetic equation for Kelvin waves on quantized vortex filaments with random large-scale curvature, that describes step-by-step (local) energy cascade over scales caused by 4-wave interactions. Resulting new energy spectrum ELN(k) ∝ k−5/3 must replace in future theory (e.g., in finding the quantum turbulence decay rate) the previously used spectrum EKS(k) ∝ k−7/5, which was recently shown to be inconsistent due to nonlocality of the 6-wave energy cascade.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Donnelly, Quantized Vortices in He II (Cambridge Univ., Cambridge, 1991).Google Scholar
  2. 2.
    W. F. Vinen and J. J. Niemela, J. Low Temp. Phys. 128, 167 (2002).CrossRefGoogle Scholar
  3. 3.
    V. B. Eltsov, M. Krusius, and G. E. Volovik, Vortex Formation and Dynamics in Superfluid 3 He and Analogies in Quantum Field Theory, Ed. by W. P. Halperin, Progress Low Temp. Phys. (Elsevier, Amsterdam, 2005), Vol. 15.Google Scholar
  4. 4.
    V. B. Eltsov et al., Phys. Rev. Lett. 99, 265301 (2007).CrossRefADSGoogle Scholar
  5. 5.
    V. B. Eltsov et al., Progr. Low Temp. Phys. 16, 46 (2009).Google Scholar
  6. 6.
    P. M. Walmsley et al., Phys. Rev. Lett. 99, 265302 (2007).CrossRefADSGoogle Scholar
  7. 7.
    V. Bretin et al., Phys. Rev. Lett. 90, 100403 (2003).CrossRefADSGoogle Scholar
  8. 8.
    T. Mizushima et al., Phys. Rev. Lett. 90, 180401 (2003).CrossRefADSGoogle Scholar
  9. 9.
    W. F. Vinen, M. Tsubota, and A. Mitani, Phys. Rev. Lett. 91, 135301 (2003).CrossRefADSGoogle Scholar
  10. 10.
    J. Yepez et al., Phys. Rev. Lett. 103, 084501 (2009).CrossRefADSGoogle Scholar
  11. 11.
    W. Thomson (Lord Kelvin), Philos. Mag. 10, 155 (1880).Google Scholar
  12. 12.
    E. Kozik and B. Svistunov, Phys. Rev. Lett. 92, 035301 (2004); Phys. Rev. B 77, 060502(R) (2008); J. Low Temp. Phys. 156, 215 (2009).CrossRefADSGoogle Scholar
  13. 13.
    J. Laurie, V. S. L’vov, S. V. Nazarenko, and O. Rudenko, Phys. Rev. B 81, 104526 (2010).CrossRefADSGoogle Scholar
  14. 14.
    G. Boffetta, A. Celani, D. Dezzani, et al., J. Low Temp. Phys. 156, 193 (2009).CrossRefGoogle Scholar
  15. 15.
    V. E. Zakharov, V. S. L’vov, and G. E. Falkovich, Kolmogorov Spectra of Turbulence (Springer, 1992).Google Scholar
  16. 16.
    V. S. L’vov, S. V. Nazarenko, and O. Rudenko, Phys. Rev. B 76, 024520 (2007); J. Low Temp. Phys. 153, 140 (2008).CrossRefADSGoogle Scholar
  17. 17.
    C. Connaughton, S. Nazarenko, and A. C. Newell, Physica D 184, 86 (2003).MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    S. V. Nazarenko, Ph. D. Thesis (Landau Inst. Theor. Phys., Moscow, 1990).Google Scholar
  19. 19.
    S. Galtier, S. V. Nazarenko, and A. C. Newell, Physica D 646–652, 152 (2001).MathSciNetGoogle Scholar
  20. 20.
    C. Connaughton, S. Nazarenko, and A. C. Newell, “Dimensional Analysis and Weak Turbulence,” Physica D 184, 86 (2003).MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. S. L’vov
    • 1
  • S. Nazarenko
    • 2
  1. 1.Department of Chemical PhysicsThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Mathematics InstituteWarwick UniversityCoventryUK

Personalised recommendations