JETP Letters

, Volume 91, Issue 8, pp 373–377 | Cite as

Interference effects in the conical emission of a femtosecond filament in fused silica

  • A. E. Dormidonov
  • V. P. Kandidov
  • V. O. Kompanets
  • S. V. Chekalin
Article

Abstract

It is shown both experimentally and theoretically that interference effects play the key role in the formation of frequency-angular spectrum of the filament conical emission. For the first time, we investigated experimentally the transformation of the conical emission frequency-angular spectrum with an increase in the filament length inside fused silica. We discovered the appearance of fine structure of the conical emission rings produced by lengthy filament. It is shown that the conical emission frequency-angular spectrum is produced by interference of coherent radiation from one or several moving point sources in the filament. The shape of the conical emission spectrum depends on the medium material dispersion, the spectrum structure is determined by length and relative location of filament emitting regions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Golub, Opt. Lett. 15, 305 (1990).CrossRefADSGoogle Scholar
  2. 2.
    O. G. Kosareva, V. P. Kandidov, A. Brodeur, et al., Opt. Lett. 22, 1332 (1997).CrossRefADSGoogle Scholar
  3. 3.
    S. L. Chin, S. A. Hosseini, W. Liu, et al., Canad. J. Phys. 83, 863 (2005).CrossRefADSGoogle Scholar
  4. 4.
    O. G. Kosareva, A. V. Grigor’evskii, and V. P. Kandidov, Quantum Electron. 35, 1013 (2005).CrossRefADSGoogle Scholar
  5. 5.
    A. E. Dormidonov, V. P. Kandidov, V. O. Kompanets, and S. V. Chekalin, Quantum Electron. 39, 653 (2009).CrossRefADSGoogle Scholar
  6. 6.
    S. L. Chin, A. Brodeur, S. Petit, et al., J. Nonlinear Opt. Phys. Mater. 8, 121 (1999).CrossRefADSGoogle Scholar
  7. 7.
    W. Liu, S. A. Hosseini, Q. Luo, et al., New J. Phys. 6, 6 (2004).CrossRefADSGoogle Scholar
  8. 8.
    K. Cook, A. K. Kar, and R. A. Lamb, Appl. Phys. Lett. 83, 3861 (2003).CrossRefADSGoogle Scholar
  9. 9.
    E. T. J. Nibbering, P. F. Curley, G. Grillon, et al., Opt. Lett. 21, 62 (1996).CrossRefADSGoogle Scholar
  10. 10.
    G. G. Luther, A. C. Newell, J. V. Moloney, and E. M. Wright, Opt. Lett. 19, 789 (1994).CrossRefADSGoogle Scholar
  11. 11.
    V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, et al., Appl. Phys. B 77, 149 (2003).CrossRefADSGoogle Scholar
  12. 12.
    M. Kolesik, E. M. Wright, and J. V. Moloney, Opt. Express 13, 10729 (2005).CrossRefADSGoogle Scholar
  13. 13.
    C. Conti, S. Trillo, P. Di Trapani, et al., Phys. Rev. Lett. 90, 170406 (2003).CrossRefADSGoogle Scholar
  14. 14.
    D. Faccio, A. Couairon, and P. D. Trapani, in Conical Waves, Filaments and Nonlinear Filamentation Optics (ARACNE, Rome, 2007), p. 162.Google Scholar
  15. 15.
    A. E. Dormidonov and V. P. Kandidov, Laser Phys. 19, 1993 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. E. Dormidonov
    • 1
  • V. P. Kandidov
    • 1
  • V. O. Kompanets
    • 2
  • S. V. Chekalin
    • 2
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Institute of SpectroscopyRussian Academy of SciencesTroitsk, Moscow regionRussia

Personalised recommendations