Advertisement

JETP Letters

, Volume 91, Issue 7, pp 336–340 | Cite as

Nature of the low-energy excitations of a charge-ordered phase of La0.25Ca0.75MnO3 manganites

  • B. P. Gorshunov
  • E. S. Zhukova
  • E. G. Maksimov
  • A. S. Prokhorov
  • V. I. Torgashev
  • T. Zhang
  • D. Wu
  • M. Dressel
Condensed Matter

Abstract

The nature of the low-energy excitations of polycrystalline and nanostructured La0.25Ca0.75MnO3 samples has been analyzed in order to investigate the mechanisms of charge ordering in manganites. It has been found that the electrodynamic response spectra of La0.25Ca0.75MnO3 in the energy range of 0.5 to 90 meV and the temperature range of 5 to 300 K have no resonance features that could be attributed to the collective excitations of the charge-ordered phase. It has been shown that the absorption lines observed at frequencies of 20–40 and 80–100 cm–1 are attributed to usual acoustic phonons becoming optically active owing to the structure phase transition and the appearance of a fourfold superstructure with a quadruple period along the crystallographic a axis. The suppression of the superstructure has been revealed in samples with nanocrystallites (≤40 nm). This suppression indicates a relatively weak coupling of the charge and magnetic order parameters with the phonon subsystem.

Keywords

Dielectric Permittivity Manganite JETP Letter Structure Phase Transition Charge Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. N. R. Rao and B. Raveau, Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides (World Sci., Singapore, 1998).Google Scholar
  2. 2.
    Y. Tokura, Colossal Magnetoresistance Oxides (Gordon and Breach, New York, 2000).Google Scholar
  3. 3.
    E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 110 (2001).CrossRefGoogle Scholar
  4. 4.
    J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 58, 571 (2009).CrossRefGoogle Scholar
  5. 5.
    H. Kuwahara, Y. Tomioka, A. Asamitsu, et al., Science 270, 961 (1995).CrossRefADSGoogle Scholar
  6. 6.
    A. Asamitsu, Y. Tomioka, H. Kuwahara, et al., Nature 388, 50 (1997).CrossRefADSGoogle Scholar
  7. 7.
    D. P. Kozlenko, Z. Jirak, I. N. Goncharenko, et al., J. Phys. C 16, 5883 (2004).Google Scholar
  8. 8.
    C. Cui and A. Tyson, Phys. Rev. B 70, 094409 (2004).CrossRefADSGoogle Scholar
  9. 9.
    V. Kiryukhin, D. Casa, J. P. Hill, et al., Nature 386, 813 (1997).CrossRefADSGoogle Scholar
  10. 10.
    D. E. Cox, P. G. Radaelli, M. Marezio, et al., Phys. Rev. B 57, 3305 (1998).CrossRefADSGoogle Scholar
  11. 11.
    T. Mori, K. Ogawa, K. Yoshida, et al., J. Phys. Soc. Jpn. 66, 3570 (1997).CrossRefADSGoogle Scholar
  12. 12.
    T. Zhang, T. F. Zhou, T. Qian, et al., Phys. Rev. B 76, 174415 (2007).CrossRefADSGoogle Scholar
  13. 13.
    T. Zhang and M. Dressel, Phys. Rev. B 80, 014435 (2009).CrossRefADSGoogle Scholar
  14. 14.
    R. von Helmolt, J. Wecker, B. Holzapfel, et al., Phys. Rev. Lett. 71, 2331 (1993).CrossRefADSGoogle Scholar
  15. 15.
    S. Jin, T. H. Tiefel, M. McCormack, et al., Science 264, 413 (1994).CrossRefADSGoogle Scholar
  16. 16.
    J. Goodenough, Phys. Rev. 100, 564 (1955).CrossRefADSGoogle Scholar
  17. 17.
    S. Mori, C. H. Chen, and S.-W. Cheong, Nature 392, 473 (1998).CrossRefADSGoogle Scholar
  18. 18.
    C. H. Chen, S.-W. Cheong, and H. Y. Hwang, J. Appl. Phys. 81, 4326 (1997).CrossRefADSGoogle Scholar
  19. 19.
    R. Wang, J. Gui, Y. Zhu, and A. R. Moodenbaugh, Phys. Rev. B 61, 11946 (2000).CrossRefADSGoogle Scholar
  20. 20.
    P. G. Radaelli, D. E. Cox, L. Caponga, et al., Phys. Rev. B 59, 14440 (1999).CrossRefADSGoogle Scholar
  21. 21.
    J. Herrero-Martin, J. Garsia, G. Subias, et al., Phys. Rev. B 70, 024408 (2004).CrossRefADSGoogle Scholar
  22. 22.
    M. Coey, Nature 430, 155 (2004).CrossRefADSGoogle Scholar
  23. 23.
    J. C. Loudon, S. Cox, A. J. Williams, et al., Phys. Rev. Lett. 94, 097202 (2005).CrossRefADSGoogle Scholar
  24. 24.
    S. Cox, E. Rosten, J. C. Chapman, et al., Phys. Rev. B 73, 132401 (2006).CrossRefADSGoogle Scholar
  25. 25.
    M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge Univ., Cambridge, 2002).CrossRefGoogle Scholar
  26. 26.
    B. P. Gorshunov, A. Volkov, A. S. Prokhorov, et al., Quantum Electron. 37, 916 (2007).CrossRefADSGoogle Scholar
  27. 27.
    N. Kida and M. Tonouchi, Phys. Rev. B 66, 024401 (2002).CrossRefADSGoogle Scholar
  28. 28.
    G. Gruner, Density Waves in Solids (Addison-Wesley, Reading, 1994).Google Scholar
  29. 29.
    A. Nucara, P. Maselli, P. Calvani, et al., Phys. Rev. Lett. 101, 066407 (2008).CrossRefADSGoogle Scholar
  30. 30.
    G. C. Milward, M. J. Calderion, and P. B. Littlewood, Nature 433, 607 (2005).CrossRefADSGoogle Scholar
  31. 31.
    Y.-G. Chuang, A. D. Gromko, D. S. Dessau, et al., Science 292, 1509 (2001).CrossRefADSGoogle Scholar
  32. 32.
    M. Pissas, I. Margiolaki, K. Prassides, et al., Phys. Rev. B 72, 064426 (2005).CrossRefADSGoogle Scholar
  33. 33.
    A. Wahl, S. Mercone, A. Pautrat, et al., Phys. Rev. B 68, 094429 (2003).CrossRefADSGoogle Scholar
  34. 34.
    S. Cox, J. Singleton, R. D. McDonald, et al., Nature 7, 25 (2008).CrossRefGoogle Scholar
  35. 35.
    R. Schmidt, Phys. Rev. B 77, 205101 (2008).CrossRefADSGoogle Scholar
  36. 36.
    B. Fisher, J. Genossar, L. Patlagan, et al., J. Magn. Magn. Mater. (in press).Google Scholar
  37. 37.
    X. G. Huang, J. F. Ding, G. Q. Zhang, et al., Phys. Rev. B 78, 224408 (2008).CrossRefADSGoogle Scholar
  38. 38.
    T. Sarkar, B. Ghosh, A. K. Raychaudhuri, et al., Phys. Rev. B 77, 235112 (2008).CrossRefADSGoogle Scholar
  39. 39.
    A. V. Sokolov, Optical Properties of Metals (GIFML, Moscow, 1961; American Elsevier, New York, 1967).Google Scholar
  40. 40.
    K. H. Kim, S. Lee, T. W. Noh, et al., Phys. Rev. Lett. 88, 167204 (2002).CrossRefADSGoogle Scholar
  41. 41.
    S. Cox, J. C. Lashley, E. Rosten, et al., J. Phys. Condens. Matter 19, 192201 (2007).CrossRefADSGoogle Scholar
  42. 42.
    E. G. Rini, M. N. Rao, S. L. Chaplot, et al., Phys. Rev. B 75, 214301 (2007).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • B. P. Gorshunov
    • 1
  • E. S. Zhukova
    • 1
  • E. G. Maksimov
    • 2
  • A. S. Prokhorov
    • 1
  • V. I. Torgashev
    • 3
  • T. Zhang
    • 4
    • 5
  • D. Wu
    • 4
  • M. Dressel
    • 4
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Faculty of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  4. 4.1. Physikalisches InstitutUniversität StuttgartStuttgartGermany
  5. 5.Institute of Solid State PhysicsChinese Academy of SciencesHefeiChina

Personalised recommendations