Advertisement

JETP Letters

, Volume 91, Issue 2, pp 62–65 | Cite as

Probability of the occurrence of freak waves

  • V. E. Zakharov
  • R. V. Shamin
Nonlinear Dynamics

Abstract

The statistics of the occurrence of freak waves on a surface of an ideal heavy liquid is studied. The freak (rogue, extreme) waves arise in the course of evolution of a statistically homogeneous random Gaussian wave field. The mean steepness of initial data varies from small (μ2 = 1.54 × 10−3) to moderate (μ2 = 3.08 × 10−3) values. The frequency of the occurrence of extreme waves decreases with an increase in the spectral width of the initial distribution, but remains relatively high even for broad spectra (Δ k /Δ ∼ 1).

Keywords

JETP Letter Conformal Mapping Spectral Width Significant Wave Height Lower Half Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Kurkin and E. N. Pelinovskii, Freak Waves: Facts, Theory, and Simulation (Nizhegor. Gos. Tekh. Univ., Nizhni Novgorod, 2004), p. 158 [in Russian].Google Scholar
  2. 2.
    K. L. Henderson, D. H. Pelegrine, and J. W. Dold, Wave Motion 29, 341 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    W. J. D. Baterman, C. Swan, and P. H. Taylor, J. Comput. Phys. 174, 277 (2000).CrossRefADSGoogle Scholar
  4. 4.
    V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, Eur. J. Mech. B: Fluids 21, 283 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    V. E. Zakharov, A. I. Dyachenko, and A. O. Prokofiev, Eur. J. Mech. B: Fluids 25, 677 (2006).zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    V. E. Zakharov and A. I. Dyachenko, Eur. J. Mech. B: Fluids, Online Publ. Nov. 5, 2009.Google Scholar
  7. 7.
    V. E. Zakharov, A. I. Dyachenko, and A. O. Prokofiev, “Freak Waves: Peculiarities of Numerical Simulations,” in Extreme Ocean Waves, Ed. by E. Pelinovsky and C. Harif (Springer, Berlin, 2008).Google Scholar
  8. 8.
    A. I. Dyachenko and V. E. Zakharov, Pis’ma Zh. Eksp. Teor. Fiz. 88, 356 (2008) [JETP Lett. 88, 307 (2008)].Google Scholar
  9. 9.
    R. V. Shamin, Computational Experiments in Simulation of Surface Waves in Ocean (Nauka, Moscow, 2008), p. 133 [in Russian].Google Scholar
  10. 10.
    R. V. Shamin, J. Math. Sci. 160, 537 (2009).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. V. Shamin, Dokl. Akad. Nauk 406, 112 (2006).MathSciNetGoogle Scholar
  12. 12.
    R. V. Shamin, Sib. Zh. Vych. Matem. 9, 379 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Shirshov Institute of Oceanology of the Russian Academy of SciencesMoscowRussia
  3. 3.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations