JETP Letters

, Volume 91, Issue 1, pp 40–47 | Cite as

Coulomb zero bias anomaly for fractal geometry and conductivity of granular systems near the percolation threshold

  • A. S. Ioselevich
Condensed Matter


A granular system slightly below the percolation threshold is a collection of finite metallic clusters, characterized by wide spectrum of sizes, resistances, and charging energies. Electrons hop from cluster to clusters via short insulating “links” of high resistance. At low temperatures all clusters are Coulomb blockaded and the dc-conductivity σ is exponentially suppressed. At lowest T the leading transport mechanism is variable range cotunneling via largest (critical) clusters, leading to the modified Efros-Shklovsky law. At intermediate temperatures the principal suppression of ρ originates from the Coulomb zero bias anomaly occurring, when electron tunnels between adjacent large clusters with large resistances. Such clusters are essentially extended objects and their internal dynamics should be taken into account. In this regime the T-dependence of ρ is stretched exponential with a nontrivial index, expressed through the indices of percolation theory. Due to the fractal structure of large clusters the anomaly is strongly enhanced: it arises not only in low dimensions, but also in d = 3 case.


JETP Letter Fractal Geometry Granular System Critical Cluster Coulomb Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Disorder and Granular Media, Ed. by D. Bideau and A. Hansen (North-Holland, Amsterdam, 1993).Google Scholar
  2. 2.
    Nanocomposite Science and Technology, Ed. by P. M. Ajayan, L. S. Schadler, and P. V. Braun (Wiley-VCH, Weinheim, 2003).Google Scholar
  3. 3.
    Single Electron Tunnelling, Ed. by H. Grabert and M. H. Devoret (Plenum, New York, London, 1992).Google Scholar
  4. 4.
    D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Fransis, London, 1994).Google Scholar
  5. 5.
    A. Bunde and S. Havlin, Percolation I, in Fractals and Disordered Systems, Ed. by A. Bunde and S. Havlin (Springer, Berlin, 1996).Google Scholar
  6. 6.
    The term “touching” does not necessarily mean direct metal-metal contact. In some systems a thin insulating (e.g., oxide) layer still separates two touching grains, but its thickness is much smaller than for nontouching grains.Google Scholar
  7. 7.
    J. Zhang and B. I. Shklovskii, Phys. Rev. B 70, 115317 (2004).CrossRefADSGoogle Scholar
  8. 8.
    M. V. Feigelman and A. S. Ioselevich, JETP Lett. 81, 341 (2005).Google Scholar
  9. 9.
    I. S. Beloborodov, A. V. Lopatin, and V. M. Vinokur, Phys. Rev. B 72, 125121 (2005).CrossRefADSGoogle Scholar
  10. 10.
    A. L. Efros and B. I. Shklovskii, J. Phys. C 8, L49 (1975).CrossRefADSGoogle Scholar
  11. 11.
    A. S. Ioselevich and D. S. Lyubshin, JETP Lett. 90, 746 (2009).Google Scholar
  12. 12.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).Google Scholar
  13. 13.
    A. L. Efros and B. I. Shklovskii, Phys. Stat. Solidi B 76, 475 (1976).CrossRefADSGoogle Scholar
  14. 14.
    B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Solids, Ed. by A. L. Efros and M. Pollak (North-Holland, Amsterdam, 1985).Google Scholar
  15. 15.
    A. M. Finkelshtein, JETP 57, 97 (1983); A. M. Finkelstein, JETP 59, 213 (1984).Google Scholar
  16. 16.
    Yu. V. Nazarov, JETP 68, 561 (1990); Yu. V. Nazarov, Phys. Rev. B 43, 6220 (1991); G.-L. Ingold and Yu. V. Nazarov, “Charge Tunneling Rates in Ultrasmall Junctions,” Ch. 2 in [3], p. 21.Google Scholar
  17. 17.
    L. S. Levitov and A. V. Shytov, JETP Lett. 66, 214 (1997).CrossRefADSGoogle Scholar
  18. 18.
    E. G. Mishchenko, A. V. Andreev and L. I. Glazman, Phys. Rev. Lett. 87, 246801 (2001).CrossRefADSGoogle Scholar
  19. 19.
    R. Egger and A. O. Gogolin, Phys. Rev. Lett. 87, 066401 (2001).CrossRefADSGoogle Scholar
  20. 20.
    M. V. Feigelman and A. S. Ioselevich, JETP Lett. 88, 882 (2008).Google Scholar
  21. 21.
    N. F. Mott, J. Non-Cryst. Solids 1, 1 (1968).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. S. Ioselevich
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations