JETP Letters

, Volume 90, Issue 12, pp 768–770 | Cite as

Roton dipole moment

  • V. P. Mineev
Condensed Matter


The roton excitation in the superfluid 4He does not possess a stationary dipole moment. However, a roton has an instantaneous dipole moment, such that at any given moment one can find it in the state either with positive or with negative dipole moment projection on its momentum direction. The instantaneous value of electric dipole moment of roton excitation is evaluated. The result is in reasonable agreement with recent experimental observation of the splitting of microwave resonance absorption line at roton frequency under external electric field.


Dipole Moment JETP Letter Electric Dipole Moment Helium Atom Momentum Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Rybalko, S. Rubets, E. Rudavskii, et al., Phys. Rev. B 76, 140503 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    A. S. Rybalko, S. P. Rubets, E. Ya. Rudavskii, et al., Fiz. Nizk. Temp. 34, 326 (2008) [J. Low Temp. Phys. 34, 431 (2008)].Google Scholar
  3. 3.
    A. S. Rybalko, S. P. Rubets, E. Ya. Rudavskii, et al., arXiv:0811.2114.Google Scholar
  4. 4.
    The momentum compensation by the flow of superfluid component has been considered by A. S. Rybalko, S. P. Rubets, E. Ya. Rudavskii, et al., Fiz. Nizk. Temp. 35, 1073 (2009) [J. Low Temp. Phys. 35, 1177 (2009)]. We use here the same argumentation without reference to superfluid motion which loses its sense at frequencies much higher than temperature.Google Scholar
  5. 5.
    G. E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 15, 116 (1972) [JETP Lett. 15, 81 (1972)].Google Scholar
  6. 6.
    Author is indebted to G. Volovik for this remark.Google Scholar
  7. 7.
    A. S. Rybalko, S. P. Rubets, E. Ya. Rudavskii, et al., arXiv:0807.4810.Google Scholar
  8. 8.
    R. P. Feynman and Michael Cohen, Phys. Rev. 102, 1189 (1956).ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    To the best of my knowledge still there is no a microscopic proof the Feynman ideas. On the other hand, it was shown that the quantum vortices and the phononroton excitations belong to the different branches of solutions of the Gross-Pitaevskii equation with nonlocal potential of very special form (see N. G. Berloff and P. H. Roberts, J. Phys. A: Math. Gen. 32, 5611 (1999)). However, the applicability of the Gross-Pitaevskii equation to the description of the collective excitations in superfluid He-4 at interatomic scale of distances is questionable.MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Butterworth-Heinemann, Oxford, 1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. P. Mineev
    • 1
  1. 1.Commissariat à l’Energie AtomiqueINAC/SPSMSGrenobleFrance

Personalised recommendations