JETP Letters

, Volume 90, Issue 12, pp 758–762 | Cite as

Direct bandgap optical transitions in Si nanocrystals

  • A. A. Prokofiev
  • A. S. Moskalenko
  • I. N. Yassievich
  • W. D. A. M. de Boer
  • D. Timmerman
  • H. Zhang
  • W. J. Buma
  • T. Gregorkiewicz
Condensed Matter

Abstract

The effect of quantum confinement on the direct bandgap of spherical Si nanocrystals has been modelled theoretically. We conclude that the energy of the direct bandgap at the Γ-point decreases with size reduction: quantum confinement enhances radiative recombination across the direct bandgap and introduces its “red“ shift for smaller grains. We postulate to identify the frequently reported efficient blue emission (F-band) from Si nanocrystals with this zero-phonon recombination. In a dedicated experiment, we confirm the “red“ shift of the F-band, supporting the proposed identification.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Canham, Appl. Phys. Lett. 57, 1046 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Phys. Stat. Solidi 215, 871 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    D. Kovalev et al., Phys. Rev. Lett. 81, 2803 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    L. Pavesi et al., Nature (London) 408, 440 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    L. Tsybeskov, Ju. V. Vandyshev, and P. M. Fauchet, Phys. Rev. B 49, 7821 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    F. Trojánek, K. Neudert, M. Bittner, and P. Maly, Phys. Rev. B 72, 075365 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    V. Kuntermann et al., Phys. Rev. B 77, 115343 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Chao, A. Houlton, et al., Appl. Phys. Lett. 88, 263119 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    M. V. Wolkin, J. Jorne, P. M. Fauchet, et al., Phys. Rev. Lett. 82, 197 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B 48, 11024 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    J. Valenta et al., New J. Phys. 10, 073022 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    J. P. Wilcoxon and G. A. Samara, Appll. Phys. Lett. 74, 3164 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    D. S. English, L. E. Pell, Y. Zhonghua, et al., Nano Lett. 2, 681 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    M. Cardona and F. H. Pollak, Phys. Rev. 142, 530 (1966).ADSCrossRefGoogle Scholar
  15. 15.
    A. S. Moskalenko, J. Berakdar, A. A. Prokofiev, and I. N. Yassievich, Phys. Rev. B 76, 085427 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    M. V. Rama Krishna and R. A. Friesner, J. Chem. Phys. 96, 873 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    C. Delerue and M. Lannoo, Nanostructures: Theory and Modelling (Springer, Berlin, 2004).Google Scholar
  18. 18.
    S. V. Goupalov, Phys. Rev. B 72, 073301 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    A. Blacha, H. Presting, and M. Cardona, Phys. Stat. Solidi B 126, 11 (1984).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Kanzawa et al., Solid Stat. Commun. 102, 533 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    D. Timmerman et al., Nature Phot. 2, 105 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    K. Watanabe, M. Fujii, and S. Hayashi, J. Appl. Phys. 90, 4761 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    M. Sykora et al., Phys. Rev. Lett. 100, 067401 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    P. Schmidt, R. Berndt, and M. I. Vexler, Phys. Rev. Lett. 99, 246103 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, J. Appl. Phys. 86, 6128 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. A. Prokofiev
    • 1
  • A. S. Moskalenko
    • 1
    • 2
  • I. N. Yassievich
    • 1
  • W. D. A. M. de Boer
    • 3
  • D. Timmerman
    • 3
  • H. Zhang
    • 4
  • W. J. Buma
    • 4
  • T. Gregorkiewicz
    • 3
  1. 1.Ioffe Physico-Technical InstituteSt. PetersburgRussia
  2. 2.Institut für PhysikMartin-Luther-UniversitätHalle-WittenbergGermany
  3. 3.Van der Waals-Zeeman InstituteUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Van’t Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations